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Problem Description

Schrodinger equation

Schrédinger equation
Given a potential g and an energy E find the solution to

(~A+q)u=Eu in R3,

lim |x| (a - ME) u(x) = 0.

|x| =00 8|X|

Frederic Weidling Tikhonov Regularization for Inverse Medium Scattering in Banach Spaces



Problem Description

Schrodinger equation

Schrédinger equation
Given a potential g and an energy E find the solution to

(~A+q)u=Eu in R3,
0
lim |x —i\/E)UX =0.
e <5|X| )
Assumption on the potential g
@ g€ L™

@ suppg C B(r)
@ ¢ is absorbing, i.e. (q) >0
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Problem Description

Schrodinger equation

Schrédinger equation
Given a potential g and an energy E find the solution to

(~A+q)u=Eu in R3,
. 0 .
‘Xl‘lgwoo\x\ <8|X| — I\/E) u(x) =0.

Assumption on the potential g

@ g€ L™
ensures unique solvability
e suppg C B(r) with u € H}
ocC

@ ¢ is absorbing, i.e. (q) >0
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Problem Description

Near field inverse problem

Total field u = incident field uiy + scattered field u;

known unknown
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Problem Description

Near field inverse problem

Total field u = incident field u)i, + scattered field u;

known unknown

Incident fields are free space

solutions @ Uy,

1 ei\/E‘X_Y| N_LUT/ 'fu:/

=

\ y
<y
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Problem Description

Near field inverse problem

Total field u = incident field u)i, + scattered field u;

known unknown

Incident fields are free space
solutions

i\/E xX—y
i 1 e VEKx—YI

Y G T

Measurement is the Green's function

8a(x,y) = u,(x) + uy(x)

gq(;c, y) =

on OB(R) with R = |y| > r. OB(R u(z) + b ()
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Problem Description

Near field inverse problem

Total field u = incident field u)i, + scattered field u;

known unknown
Incident fields are free space
solutions
i\/E X—
. 1 e/VEIx—yl
uy(x =
4t |x —y|

Measurement is the Green's function

8a(x,y) = u,(x) + uy(x)

gq(;c, y) =

on OB(R) with R = |y| > r. OB(R u(z) + b ()

~> Repeat for all y € 9B(R).
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Variational source conditions

Regularization Approach ‘"

How to obtain rates

Define operator F: dom(F) — L?(0B(R) x 0B(R)) =: Y, q+— g
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rce conditions

Regularization Approach

How to obtain rates

Define operator F: dom(F) — L?(0B(R) x 0B(R)) =: Y, q+— g

Problem is ill-posed ~~ apply Tikhonov regularization of the form

) 1 3
gh € argmin T, 0(q),  Tog(a) = |5-[|F(a) =& | Y] +R(q)
gEdom(F) 67
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rce conditions

Regularization Approach

How to obtain rates

Define operator F: dom(F) — L?(0B(R) x 0B(R)) =: Y, q+— g

Problem is ill-posed ~~ apply Tikhonov regularization of the form

1
e argmin Tup (@) Tugel0) = 55 lF@ - & Y+ R(a)
gedom(F) «

A variational source condition

L 1 “ 4 2
¥g: (q".q" —q) < SAr(q, q*)+w(HF(q) —F(a" [V )
with g* € OR(q") implies rates of the form

Ar(q2,q") < 49(5)

for optimal choice of a.
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Variation onditions

Regularization Approach Pgnown Resiz

Known results

@ Exponential instability ~» 1 must be of logarithmic form

<> N. Mandache. Exponential instability in an inverse problem for the Schrédinger equation.
Inverse Problems, 17:1435-1444, 2001.
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Variation onditions

Regularization Approach Pgnown Reauliis

Known results

@ Exponential instability ~» ¥ must be of logarithmic form
e Conditial Stability: ||q; | L°|| < a1 and ||g; | H*|| < o

las — a2 | £2]| < AEY25Y/2 + B(E + In2(571) "

< G. Alessandrini. Stable determination of conductivity by boundary measurements.
Applicable Analysis, 27:153-172, 1988.

< M. I. Isaev and R. G. Novikov. Effectivized Hélder-logarithmic stability estimates for the
Gel'fand inverse problem. Inverse Problems, 30:095006, 2014.
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Regularization Approach

Known results

@ Exponential instability ~» 1 must be of logarithmic form
e Conditial Stability: ||q; | L°|| < ¢ and ||g; | H*|| < o

g — a2 | 2] < AEV26Y2 4+ B(E + In?(571))~*/°

e Regularization strategy for R(q) = ||q| LP||’+constraint if p > 3/2

<> A. Lechleiter, K. S. Kazimierski and M. Karamehmedovi¢ Tikhonov regularization in L?
applied to inverse medium scattering. Inverse Problems, 29:075003, 2013.

Frederic Weidling Tikhonov Regularization for Inverse Medium Scattering in Banach Spaces



Regularization Approach

Known results

@ Exponential instability ~» 1 must be of logarithmic form
e Conditial Stability: ||q; | L°|| < ¢ and ||g; | H*|| < o

g — a2 | 2] < AEV26Y2 4+ B(E + In?(571))~*/°

e Regularization strategy for R(q) = ||q| LP||’+constraint if p > 3/2
e VSC for R(q) = |lq| H™||*+-constraint if m > 3/2 of the form

max{1, 757 }

Y1) = A(In*(671)

< T. Hohage and F. Weidling. Verification of a variational source condition for acoustic
inverse medium scattering problems. Inverse Problems, 31:075006, 2015.
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Variation

Regularization Approach Kpows Resfllts

A wishlist

@ Penalty term R

o of the form R(q) = %||q| X||"+constraints for some Banach space X

B
e not force solution smoothness
e sparsity enforcing (i.e. p close to 1)
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Variation

Regularization Approach Kpows Resfllts

A wishlist

@ Penalty term R

o of the form R(q) = %||q | X||"+constraints for some Banach space X

e not force solution smoothness
e sparsity enforcing (i.e. p close to 1)

@ Regularization strategy
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Variation onditions

Regularization Approach Pgnown Resiz

A wishlist

@ Penalty term R
o of the form R(q) = %||q | X||"+constraints for some Banach space X
e not force solution smoothness
e sparsity enforcing (i.e. p close to 1)

@ Regularization strategy

@ Holder-logarithmic w.r.t. energy E

@ Unbounded exponent
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Variation onditions

Regularization Approach Pgnown Resiz

How to verify a VSC?

Then f1 fulfills a VSC with index function

< T. Hohage and F. Weidling. Characterizations of Variational Source Conditions, Converse
Results, and Maxisets of Spectral Regularization Methods. SIAM JNA, 55:598-620, 2017.
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Variation onditions

Regularization Approach Pgnown Resiz

How to verify a VSC?

@ Assume r-convexity of X, then

CA r
— A= B[ X" < Ay 2y (2, 1)

Then f1 fulfills a VSC with index function

< T. Hohage and F. Weidling. Characterizations of Variational Source Conditions, Converse
Results, and Maxisets of Spectral Regularization Methods. SIAM JNA, 55:598-620, 2017.
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Regularization Approach

How to verify a VSC?

@ Assume r-convexity of X, then

CA r
— A= B[ X" < Ay 2y (2, 1)

o Let f* € 9L||fT|X|", Pc: X* — X* and quantify

e smoothness of the solution
10 = POF X7 < w(k),  jnf (k) =0
o ill-posedness of the problem
(£ PLET = 0) < o(R)|[F(FD) = F(E) [ 9| + i) | £ = 7] ]|
Then T fulfills a VSC with index function

<’ T. Hohage and F. Weidling. Characterizations of Variational Source Conditions, Converse
Results, and Maxisets of Spectral Regularization Methods. SIAM JNA, 55:598-620, 2017.
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Variational source
Regularization Approach e [Rezlis

How to verify a VSC?

@ Assume r-convexity of X, then

CA r
— A= B[ X" < Ay 2y (2, 1)

o Let f* € 9L||fT|X|", Pc: X* — X* and quantify
e smoothness of the solution
10~ POF X7 < a(K),  jnf (k) =0
o ill-posedness of the problem
(£ PLET = 0) < o(R)|[F(FD) = F(E) [ 9| + i) | £ = 7] ]|
Then T fulfills a VSC with index function

o

elt) = Jof |oWIVE+ () 14) w0

< T. Hohage and F. Weidling. Characterizations of Variational Source Conditions, Converse
Results, and Maxisets of Spectral Regularization Methods. SIAM JNA, 55:598-620, 2017.
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Variational source
Regularization Approach e [Rezlis

How to verify a VSC?

@ Assume r-convexity of X, then

CA r
— A= B[ X" < Ay 2y (2, 1)

o Let f* € 9L||fT|X|", Pc: X* — X* and quantify
e smoothness of the solution
1= POF |27 < (k). jnf A(K) =0
o ill-posedness of the problem
(£ PLET = 0) < o(R)|[F(FD) = F(E) [ 9| + i) | £ = 7] ]|
Then T fulfills a VSC with index function

o

elt) = Jof |oWIVE+ () 14) w0

< T. Hohage and F. Weidling. Characterizations of Variational Source Conditions, Converse
Results, and Maxisets of Spectral Regularization Methods. SIAM JNA, 55:598-620, 2017.
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Regularization Approach

Besov space
Results

Norms on Besov space B; , with p € (1,00),q € [1,00],5 € R

< H. Triebel. Theory of function spaces I, Springer, 2010.
<> H. Triebel. Theory of function spaces Ill, Birkhiuser, 2006.
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Regularization Approach

Norms on Besov space B; , with p € (1,00),q € [1,00],5 € R

Fourier approach
fi(x) == F (x;Ff)(x)

with xo(x) the characteristic
function of the unit ball in R3

Xj(x) = x0(27x) = x0(277"x)

forje N

17182 = [Sene 26 L2)°]°
p,qll "

< H. Triebel. Theory of function spaces I, Springer, 2010.
£ H. Triebel. Theory of function spaces Ill, Birkhiuser, 2006.
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Regularization Approach

Besov space
Results

Norms on Besov space B; , with p € (1,00),q € [1,00],5 € R

Fourier approach Wavelet approach
fi(x) == F* (G FF)(x) )= D (0] m) &) m(x)
G,mnel>—"

with xo(x) the characteristic N

function of the unit ball in R3
with (¢} ,,)(j,m,/yer @ smooth

xj (%) = x0(27x) — x0(277x) normalized Daubechies wavelet
system.
forje N

[Zemo 216 1 L711°)°

171834l = et
[ZjelNo DLy 259X q(zmez3|)‘j,m| )p}

< H. Triebel. Theory of function spaces I, Springer, 2010.
£ H. Triebel. Theory of function spaces Ill, Birkhiuser, 2006.
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Regularization Approach Besov space
Results

Properties

@ Inclusions: fors e R, e >0and 1 <r<g< o
s+e s+¢e S S S
prq - Bp,oo - Bp,l - Bp,r C Bp,q
@ Dual space:
s * —_
(Bp7q) =B,

s
,q’
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onditions

Regularization Approach

Properties

@ Inclusions: fors e R, e >0and 1 <r<g< o
s+e s+e s s s
prq - Bp,oo - Bp,l - Bp,r C Bp,q
@ Dual space:
s * _ p—s
(Bp7q) =B ’,q’
@ Relation to LP spaces:

BO

p,min{p,2
Relation to Sobolev spaces:

B, =W  s¢Z

} CLPC By maip2)

Typical solutions to inverse problems: f smooth up to jumps

~f e B;,’/OZ
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onditions

Regularization Approach

Properties

@ Inclusions: fors e R, e >0and 1 <r<g< o
s+e s+¢e S S S
prq - Bp,oo - Bp,l - Bp,r C Bp,q

@ Dual space:

s * _ p—s

(Bp7q) =B ’,q’

@ Relation to LP spaces:
0 0
Bp,min{pﬂ} cLPc Bp,maX{PQ}
@ Relation to Sobolev spaces:
B, ,=W?", s¢ 7
@ Typical solutions to inverse problems: f smooth up to jumps
~f e B;,’/OZ

@ Convexity: with Wavelet-norm

B, 4 is max{2, p, q}-convex

< K. S. Kazimierski On the smoothness and convexity of Besov spaces. Journal of Inverse
and lll-Posed Problems, 21:411-429, 2013.
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Regularization Approach Besov space

Results

Subdifferential Smoothness

Choose X = Bg.p forl<p<2,
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Regularization Approach Besov space
Results

Subdifferential Smoothness

Choose X = Bg.p forl<p<2
is there a smooth subspace of Bg,ﬁp, containing f*7?
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Regularization Approach

Subdifferential Smoothness

Choose X = Bg.p forl < p<2,
is there a smooth subspace of Bg,ﬁp, containing f*7

Let f* € O1||fT | BS || then

Fr= > ) m(x)
(,m,l)el
)
2P yjd(5 1) _Nim

with N’Jl',m = ||fT ’ Bg })\I |2—P.
j,m

ol

In addition 1 € B, .. fors >0 if and only if f* € B;gﬁ;l).
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Regularization Approach

Results

Tikhonov functional

1 2 1 2
Togo(a) =5-||F(a) = &" | V[|" + S la| Bp,|l

+ 1{5()>0,5upp(-)c BN H@) + L)) | 1 <1 (9)
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Regularization Approach

Results

Tikhonov functional

1 2 1 2
Togo(a) =5-||F(a) = &" | V[|" + S la| Bp,|l

+ 1{5()>0,5upp(-)c BN H@) + L)) | 1 <1 (9)

This strategy is regularizing.
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Regularization Approach

Tikhonov functional

1 2 1 2
Togo(a) =5-||F(a) = &" | V[|" + S la| Bp,|l

+ 1{5()>0,5upp(-)c BN H@) + L)) | 1 <1 (9)

This strategy is regularizing.

@ Show: weak Bg7p—topology and weak L2- topology conincide on
{qg € By ,: S(q) 2 0,supp(q) C B(r). [lq| L] < C}-
@ Use results of:

<> A. Lechleiter, K. S. Kazimierski and M. Karamehmedovi¢ Tikhonov regularization in LP
applied to inverse medium scattering. Inverse Problems, 29:075003, 2013. |
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Regularization Approach
Results

Main result

Theorem (Variational Source Condition)

R>r>0E>1,Cx>0,2>p>1,s>0and C; > 0.
Let the true potential gt satisfy:

supp(q’) € B(r), S(g") 20, lg" L= < Co, lIa"| B}l < G

Then 3c > 0 such that for all g € dom(T,,.) the VSC
(@.q"—a) < 5A (a.q")
9,9 =9 = 5250188,IP\ 9 9
eC(1+ C) <E35% +(1+C2)(E+n(3+ 52)>“>

holds true, where

S (p 7 1) } .
Frederic Weidling Tikhonov Regularization for Inverse Medium Scattering in Banach Spaces
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Regularization Approach

Results

Corollaries

Corollary (Convergence rate)

Let g° be the solution of the Tikhonov functional for optimal o, then

N 1/2
ot - a8 B2, 5 () (£ + 1+ ) (E + i3 +572) )
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Regularization Approach

Results

Corollaries

Corollary (Convergence rate)

Let g° be the solution of the Tikhonov functional for optimal o, then

_N1)2
la" — a2 | BY, || S (1+c5)(E35% + (14 C2) (E+In*(3+0672) ”)

Corollary (Stability)

Let g1, qo fulfill the conditions on q', then

o\ 1)2
las — @2 | B[ S (14+-G.) (535% + 1+ ) (E+m(E+57) ")
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The smooth part

il The ill-posed part

Projection choice

By our strategy we need:

@ A choice of projection that makes use of Besov smoothness

— At < i =
|0 = POF X7 < w(k),  inf w(k) =0

~> Fourier based projection or
~> Wavelet based projection

@ Characterization of ill-posedness
(F*, PE(FT = £)) < a (k)| F(FT) = F(F) | V|| + (K[| FT = £ | X|

~> Fourier based projection
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The smooth part

il The ill-posed part

Smoothness result

Define the projections:
lskfiz ]:*X{ngk}]:f, ke N

;o {¢;,m supp(¢!,,,) N B(r) # 0
r

P NnB
mT 0 supp(l,,) N B(r) =0

Set Py = PQﬁ)kPQ
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The smooth part

il The ill-posed part

Smoothness result

Define the projections:
Puf = F Xy <20 FF, keN
Pool e L Ohm SUPP(9)) NB(r) 70
" 0 supp(¢} ) NB(r)=0
Set Pk — PkaPQ
One obtains:

*

||(I — Pk)q* | Bg,,Pl

< C(2k)*S(P*1)’ q

BS(P—l) H

/
p’,c0

=:x(k)
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The smooth part

Proof Ideas The ill-posed part

Brief version

Use smoothness of g* and properties of Pq to show:

(@, Pi(q" — q)) < G|

X< F (" = aq) [ L
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Proof Ideas

Brief version

Use smoothness of g* and properties of Pq to show:

(q*,Pi(q" — q)) < cC;

X< F (" = aq) [ L

Treatable with “standard machinary” of scattering theory:

Ix( <29 F (@' = @) | L] < C(E3e(2R+1>f5 I

Coo
Tealel el 1)
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The smooth part

The ill-posed part

Proof Ideas

Brief version

Use smoothness of g* and properties of Pq to show:

(@, Pi(q" — q)) < G|

X< F (" = aq) [ L

Treatable with “standard machinary” of scattering theory:

Ix( <29 F (@' = @) | L] < C(E3e(2R+1>f5 I

Coo
Tealel el 1)

< P. Hihner and T. Hohage. New stability estimates for the inverse acoustic inhomogeneous
medium problem and applications. SIAM J. Math. Anal., 33:670-685, 2001.

N

R. Weder. Generalized Limiting Absorption Method and Multidimensional Inverse Scattering
Theory. Mathematical Methods in the Applied Sciences, 14:509-524, 1991.

<’ R. Novikov and G. Khenkin. The 8-equation in the multidimensional inverse scattering
problem. Russ. Math. Surv., 3:109-180, 1987.

N

D. Baskin and E. A. Spence and J. Wunsch Sharp High-Frequency Estimates for the
Helmholtz Equation and Applications to Boundary Integral Equations. SIAM J. Math.
Anal., 48:229-267, 2016.
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The smooth part

The ill-posed part

Proof Ideas

Method to recover q from g
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The smooth part

The ill-posed part

Proof Ideas

Summary

Method to recover q from g

Regularization strategy

o (T, y) =
wy () + uy (2)
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The smooth part

The ill-posed part

Proof Ideas

Summary

Method to recover q from g

Regularization strategy
no smoothness enforcement
sparsity enforcing

Gq(,y) =

OB(R ul () + uj (z)
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The smooth part

The ill-posed part

Proof Ideas

Summary

Method to recover q from g

Regularization strategy
no smoothness enforcement
sparsity enforcing
Proved rates of convergence
Holder-logarithmic w.r.t. energy E
X Unbounded exponent

Gq(,y) =

OB(R ul () + uj (z)

Frederic Weidling Tikhonov Regularization for Inverse Medium Scattering in Banach Spaces



The smooth part

The ill-posed part

Proof Ideas

Summary

Method to recover q from g

Regularization strategy
no smoothness enforcement
sparsity enforcing
Proved rates of convergence
Holder-logarithmic w.r.t. energy E
X Unbounded exponent

9q(x,y) = Prize: Add Lyl | Lx“gcm}(q)

OB(R ul () + uj (z)
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The smooth part

The ill-posed part

Proof Ideas

Summary

Method to recover q from g

Regularization strategy
no smoothness enforcement
sparsity enforcing
Proved rates of convergence
Holder-logarithmic w.r.t. energy E
X Unbounded exponent

“,V?(II)(:, z%(I:) Prize: Add L{-| LxHSCm}(q)

Thank you for your attention!
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