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Convergence Rates in Hilbert Spaces Classical Regularization Theory

Rate of convergence

Classical Setup

Setup:

o Let X, Y be Hilbert spaces
T: X — Y be a linear operator
fT € X the true solution

obs

noisy measurement g

g =T+ gl <6

Problem: find approximation of fT from g° but TT unbounded
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Convergence Rates in Hilbert Spaces Classical Regularization Theory

Rate of convergenc

Assumptions on spectral regularization

f'5 — ngbs with Ra _ qa(T* T) T*

[e3

Assumptions on SR
With ro(A) := 1 — Ago(\) assume that for all A € o(T*T) and
O<a<a
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Convergence Rates in Hilbert Spaces Classical Regularization Theory

Rate of convergenc

Assumptions on spectral regularization

f'5 — ngbs with Ra _ qa(T* T) T*

[e3

Assumptions on SR

With ro(A) := 1 — Ago(\) assume that for all A € o(T*T) and

O<a<a
9 [ga(N)] < & for some C; >0, .
@ )\ — ry(A) is decreasing and r,(A) > 0, ;i:ljrrtli::g
@ limy—0ra(A) =0 and
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Convergence Rates in Hilbert Spaces Classical Regularization Theory

Rate of convergenc

Assumptions on spectral regularization

f'5 — ngbs with Ra _ qa(T* T) T*

[e3

Assumptions on SR
With ro(A) := 1 — Aga()\) assume that for all A € o(T*T) and
O<a<a
9 [ga(N)] < & for some C; >0, .
@ )\ ry(N) is decreasing and r,(A) > 0, ;i:ljrrtli::g
@ limy—0ra(A) =0 and
@ a > r,(A) is increasing,

for converse results
Q 0< G <supgeqaprala) < G < 1. }

Frederic Weidling Characterizations of Variational Source Conditions



Convergence Rates in Hilbert Spaces Classical Regularization Theory

Rate of convergenc

Assumptions on spectral regularization

f'5 — ngbs with Ra _ qa(T* T) T*

[e3

Assumptions on SR
With ro(A) := 1 — Aga()\) assume that for all A € o(T*T) and
O<a<a
9 [ga(N)] < & for some C; >0, .
@ )\ ry(N) is decreasing and r,(A) > 0, ;i:ljrrtli::g
@ limy—0ra(A) =0 and
@ a > r,(A) is increasing,

for converse results
Q 0< G <supgepegfala) < GG <1 }

include exclude
k-iterated Tikhonov spectral cut-off
Landweber v-methods
Showalter

Lardy

modified spectral cut-off
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Convergence Rates in Hilbert Spaces

Rate of convergence

Frederic Weidling Characterizations of Variational Source Conditions




Convergence Rates in Hilbert Spaces Classical Regularization Theor

Class
Rate of convergence

Rate of convergence

1= 21F < wie)

@ Spectral source conditions for an index function k:

fl=r(T"T)w, lwl < p

- Uﬁw2)_4p%g<el<2))2, o(t) = V().

e Variational source conditions (VSC) for a concave index function :

v A(FL =) < I+ v (IR - AN
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Convergence Rates in Hilbert Spaces Classical Regularization Theor

Class
Rate of convergence

Rate of convergence

1= 21F < wie)

@ Spectral source conditions for an index function k:

fl=r(T"T)w, lwl < p

w1 (0%) = 4p%k <el (i))z, o(t) := V'tr(t).

e Variational source conditions (VSC) for a concave index function :

v A(FL =) < I+ v (IR - AN

How to verify such a condition?
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Convergence Rates in Hilbert Spaces e T

Rate of convergence

General strategy for verification

Let P, € L(X) be a family of orthogonal projection operators such that
for all r
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Convergence Rates in Hilbert Spaces rlbroe it T

Rate of convergence

General strategy for verification

Let P, € L(X) be a family of orthogonal projection operators such that
for all r

Q T is k smooth, i.e.:

(1= P)FT < K(r),
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Convergence Rates in Hilbert Spaces Classical Regularization Theor

Class
Rate of convergence

General strategy for verification

Let P, € L(X) be a family of orthogonal projection operators such that
for all r

@ 1 is k smooth, i.e.:
(1= Pl < K(r),
@ T is o ill-posed around fT, i.e.:
(F1, P (FT = £)) < o(r) || TF = TFT||, + Cr(r) ||f — 1|,
for all f with || — F1]| < 4| ']

Compare to Lipschitz stability estimates for T1:
|Pr(FT = )|l <&(r) || TPAT = TPA,
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Convergence Rates in Hilbert Spaces Classical Regularization Theor

Class
Rate of convergence

General strategy for verification

Let P, € L(X) be a family of orthogonal projection operators such that
for all r

@ 1 is k smooth, i.e.:
(1= Pl < K(r),
@ T is o ill-posed around fT, i.e.:
(F1, P (FT = £)) < o(r) || TF = TFT||, + Cr(r) ||f — 1|,

for all f with ||f — fTH < 4HfJf||.
Then £t fulfills a variational source condition with

() = 4inf [(C + 126(r)? + (V] -
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Convergence Rates in Hilbert Spaces al a
a

Rate of convergence

Summary and plan

assumptions on
general strategy ft = K(T*T)w regularization

methods
Projection \
approach \

T VSC with v, K € o(v/t)

-~

7
ffex’

—
SUPx>0 ﬁ”l[o,/\)(-r* T)ffllx < oo

Frederic Weidling Characterizations of Variational Source Conditions



Convergence Rates in Hilbert Spaces

ate of convergence

Summary and plan

assumptions on

general strategy ft = K(T*T)w regularization
\ methods Converse results
Projection
approach \
convergence rate 1),
T VSC with v, K € o(\/t) with weakly

/ quasioptimal rule
A/A(flf) dense enough

approximation

error of O(k)

S~

stochastic a-priori rate

ftex]
qualification

V. Albani, P. Elbau, M.V. de Hoop, O. Scherzer.
Optimal convergence rates results for linear inverse problems in Hilbert spaces.
Numerical Functional Analysis and Optimization 37:521-540, 2016.
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Convergence Rates in Hilbert Spaces

ate of convergence

Summary and plan

assumptions on

general strategy ft = K(T*T)w regularization
S~ methods Converse results
Projection
approach \
convergence rate 1),
T VSC with v, K € o(\/t) with weakly
/ quasioptimal rule
A/A(flf) dense enough
J. Flemming Solution smooth- |/ ¢t - xT approximation
ness of ill-posed equations in " Jqualification\ & of O(k)
Hilbert spaces: four concepts
and their cross connections
Applicable Analysis 91:1029—
1044, 2012. J. Flemming, B. Hofmann, P. Mathé stochastic a-priori rate

Sharp converse results for the regular-
ization error using distance functions
Inverse Problems 21:025006, 2011.

approximate
source condition
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Convergence Rates in Hilbert Spaces

ate of convergence

Summary and plan

assumptions on
general strategy ft = K(T*T)w regularization

\ methods Converse results
Projection
approach '\
convergence rate 1),
T VSC with v, K € o(\/t) with weakly
/ quasioptimal rule

A(fT) dense enough

Maxiset e xT approximation
€ error of O(k)

" /qualification
=S i \

fte B stochastic a-priori rate

ﬂexa mN

- Sideways heat equation
heat equation - Satellite gradiometry
- a class of mildly IPP
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Parameter choice

Converse Result &
Convergence rate

Parameter choice rules

A parameter choice rule o, is called
@ weakly quasioptimal

@ strongly quasioptimal

< T. Raus, U. Hamarik. On the quasioptimal regularization parameter choices for solving
ill-posed problems. J. Inv. lll-Posed Probl. 15:419-439, 2007.
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Parameter choice

Converse Result &
Convergence rate

Parameter choice rules

A parameter choice rule o, is called
@ weakly quasioptimal if

| R (5.00)8°" — F1]| < Cinf sup [|[Ra(TFT + &) — £T|| + O(0)

>0 i¢| <5

@ strongly quasioptimal if
||Ra*(67gobs)g0bs - fTH < C sup inf HRQ(TfT +&)— fTH + O(9)
gl <5 >0

for all ||g°b® — TfT|| < §as s — 0.

< T. Raus, U. Hamarik. On the quasioptimal regularization parameter choices for solving
ill-posed problems. J. Inv. lll-Posed Probl. 15:419-439, 2007.
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Parameter choice

Converse Result &
Convergence rate

Parameter choice rules

A parameter choice rule o, is called
@ weakly quasioptimal if

A

| R (5.00)8°" — F1]| < Cinf sup [|[Ra(TFT + &) — £T|| + O(0)

>0 i¢| <5

@ strongly quasioptimal if

(| Rav. (5.g00)8° = £1]]

IA

C sup_inf |Ra(TFT + &) — 1| + O(5)

el <o *>

for all ||g°P — TfT|| < dasd — 0.
Examples:
@ discrepancy principle: strongly quasioptimal for methods with
infinite qualification
o Lepskii: weakly quasioptimal

< T. Raus, U. Hamarik. On the quasioptimal regularization parameter choices for solving
ill-posed problems. J. Inv. lll-Posed Probl. 15:419-439, 2007.
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Parameter choice

Converse Result
Convergence rate

Interchangeability result

For all § € A(f1) := {||[ra(T*T)fT|| /||Rall : 0 < & < @} we have

inf_ sup ||Ra(TFT+&)— || <2v2 sup inf_||Ra(TFT +&) — ||

O<a<aig| < lelj<s 0<esa
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Parameter choice

Converse Result
Convergence rate

Interchangeability result

For all § € A(f1) := {||[ra(T*T)fT|| /||Rall : 0 < & < @} we have

inf_ sup ||Ra(TFT+&)— || <2v2 sup inf_||Ra(TFT +&) — ||

O<a<aig| < lelj<s 0<esa

Corollary:

@ In many cases weak and strong quasioptimality coincide.
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Parameter choice

Converse Result
Convergence rate

Interchangeability result

For all 6 € A(f1) := {||ra(T*T)fT||/|Rall : 0 < @ < @} we have

inf_ sup ||Ra(TFT+&)— || <2v2 sup inf_||Ra(TFT +&) — ||

0<a<a gl <o lglj <5 0<asa

Corollary:

@ In many cases weak and strong quasioptimality coincide.

Theorem

Let k(ra)) < rPr(«) for some p > 1 and all r > 1. Then for any finite
0o > 0 the following is equivalent for all considered methods, all al #0,
and all weakly quasioptimal parameter choice rules o, :

O suponcx miipellral T TP < co.

2
@ suPy<s<s, (2 SUPe <o || R (TFT +€) — FT[|” < 00.
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Besov spaces as maxisets
Example
Maxisets and Application Summary

Besov spaces

Maxisets: largest set on which a given methods achieves a given rate of
convergence ~ X is maxiset
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Besov spaces as maxisets
Example
Maxisets and Application Summary

Besov spaces

Maxisets: largest set on which a given methods achieves a given rate of
convergence ~ X[ is maxiset

Let A be a Laplace-Beltrami operator on Q (“sufficiently nice”),
A : [0,00) — (0,00) continuous and monotonically decreasing with
lim, oo () = 0. Let T : X := L?(Q) — Y be bounded such that

T*T =NA(—A) andset r(a)=(A"1(a)) 2

Then X. = Bs () for all s > 0 with equivalent norms.

Proof based on:

< R. Andreev. Tikhonov and Landweber convergence rates: characterization by interpolation
spaces. Inverse Problems 31:105007, 2015.
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Besov spaces as maxisets
Example
Maxisets and Application Summary

Besov spaces

Maxisets: largest set on which a given methods achieves a given rate of
convergence ~ X[ is maxiset

Theorem

Let A be a Laplace-Beltrami operator on Q (“sufficiently nice”),
A : [0,00) — (0,00) continuous and monotonically decreasing with
lim, oo () = 0. Let T : X := L?(Q) — Y be bounded such that

T*T =NA(—A) andset r(a)=(A"1(a)) 2

Then X. = Bs () for all s > 0 with equivalent norms.

HSZ

Proof based on:

< R. Andreev. Tikhonov and Landweber convergence rates: characterization by interpolation
spaces. Inverse Problems 31:105007, 2015.

Besov spaces B35
o K-interpolation spaces of Sobolev spaces H"
e embedding property: H* C B5 ., C H* “ forall 0 <e <s.
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Example
Maxisets and Application Summary

Backward heat equation

1
_ _ 0.8
Oru = Au in St x (0,%)
0.6
u(,0)=f onS!
0.4
unknown: initial temperature f 0.2
observations: g = u(-, ), final 0 0
temperature -r —x/2 0 x/2 7
N(p) = exp(—2tp) @
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Maxisets and Application

Backward heat equation

1
_ _ 0.8
Oru = Au in St x (0,%)
0.6
u(,0)=f onS!
0.4
unknown: initial temperature f 0.2
observations: g = u(-, ), final 0 0
temperature -r —x/2 0 x/2 7
N(p) = exp(—2tp) @

The following statements are equivalent for 3 > 0 and f # 0:
o e B (s
Q 1 satisfies a VSC with 1(t) = Clog(3+t~1)=25, C > 0.

© For a weakly quasioptimal parameter choice rule o, we have
sup{H,‘?a*gObs — f‘LH : ||g°bS — TfTH <d}=0 (Iog(dfl)’ﬁ)
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Maxisets and Application

Relation to spectral source conditions

Characterization of spectral source conditions known:
ff=os(T*Tw, ws(\)=(=nA)"7 o ffen(sh

< T.Hohage. Regularization of exponentially ill-posed problems. Numerical Functional
Analysis and Optimization 21:439-464, 2000.

Spectral source conditions miss rate for f1 € BS; \ H?5.
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Maxisets and Application Summar

Relation to spectral source conditions

Characterization of spectral source conditions known:
ff=os(T*Tw, ws(\)=(=nA)"7 o ffen(sh

< T.Hohage. Regularization of exponentially ill-posed problems. Numerical Functional
Analysis and Optimization 21:439-464, 2000.

Spectral source conditions miss rate for f1 € BS; \ H?5.

For given example:

1, |t|< % -~ 1
fT(t): ) | ‘< 2 — fT(n)%—
0, else

¥ H2/3’ for 5 €[0,1/4) = rate of O (|Og(571)7‘3)
— e B,/> = rate of O (log(6~* —1/4
2,007 g( ) )

Frederic Weidling Characterizations of Variational Source Conditions



Maxisets and Application Summary

Summary

assumptions on
general strategy ft = K(T*T)w regularization
methods

Projection
approach
convergence rate 1),
T VSC with 1, K € o(+/1) with weakly
quasioptimal rule

A(f1) dense enough

approximation
error of O(k)

S

it e B stochastic a-priori rate

exa rrNS

- Sideways heat equation
heat equation - Satellite gradiometry
- a class of mildly IPP

ftex] —
T*T = A—A qualification

N X
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Summary

Thank you for

your attention!

available at arXiv:1603.05133
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