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Classical Setup

Setup:
Let X,Y be Hilbert spaces
T : X→ Y be a linear operator
f † ∈ X the true solution
noisy measurement gobs

gobs = Tf † + ξ, ‖ξ‖ ≤ δ

Problem: find approximation of f † from gobs, but T † unbounded
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Assumptions on spectral regularization

f δα := Rαgobs with Rα = qα(T ∗T )T ∗

Assumptions on SR
With rα(λ) := 1− λqα(λ) assume that for all λ ∈ σ(T ∗T ) and
0 < α ≤ α

1 |qα(λ)| ≤ C1
α for some C1 > 0,

2 λ 7→ rα(λ) is decreasing and rα(λ) ≥ 0,
3 limα→0 rα(λ) = 0 and
4 α 7→ rα(λ) is increasing,
5 0 < C2 ≤ sup0<α≤α rα(α) ≤ C3 < 1.

regularizing
properties

for converse results

include exclude
k-iterated Tikhonov spectral cut-off
Landweber ν-methods
Showalter
Lardy
modified spectral cut-off

Frederic Weidling Characterizations of Variational Source Conditions



Convergence Rates in Hilbert Spaces
Converse Result

Maxisets and Application
Classical Regularization Theory
Rate of convergence

Assumptions on spectral regularization

f δα := Rαgobs with Rα = qα(T ∗T )T ∗

Assumptions on SR
With rα(λ) := 1− λqα(λ) assume that for all λ ∈ σ(T ∗T ) and
0 < α ≤ α

1 |qα(λ)| ≤ C1
α for some C1 > 0,

2 λ 7→ rα(λ) is decreasing and rα(λ) ≥ 0,
3 limα→0 rα(λ) = 0 and

4 α 7→ rα(λ) is increasing,
5 0 < C2 ≤ sup0<α≤α rα(α) ≤ C3 < 1.

regularizing
properties

for converse results

include exclude
k-iterated Tikhonov spectral cut-off
Landweber ν-methods
Showalter
Lardy
modified spectral cut-off

Frederic Weidling Characterizations of Variational Source Conditions



Convergence Rates in Hilbert Spaces
Converse Result

Maxisets and Application
Classical Regularization Theory
Rate of convergence

Assumptions on spectral regularization

f δα := Rαgobs with Rα = qα(T ∗T )T ∗

Assumptions on SR
With rα(λ) := 1− λqα(λ) assume that for all λ ∈ σ(T ∗T ) and
0 < α ≤ α

1 |qα(λ)| ≤ C1
α for some C1 > 0,

2 λ 7→ rα(λ) is decreasing and rα(λ) ≥ 0,
3 limα→0 rα(λ) = 0 and
4 α 7→ rα(λ) is increasing,
5 0 < C2 ≤ sup0<α≤α rα(α) ≤ C3 < 1.

regularizing
properties

for converse results

include exclude
k-iterated Tikhonov spectral cut-off
Landweber ν-methods
Showalter
Lardy
modified spectral cut-off

Frederic Weidling Characterizations of Variational Source Conditions



Convergence Rates in Hilbert Spaces
Converse Result

Maxisets and Application
Classical Regularization Theory
Rate of convergence

Assumptions on spectral regularization

f δα := Rαgobs with Rα = qα(T ∗T )T ∗

Assumptions on SR
With rα(λ) := 1− λqα(λ) assume that for all λ ∈ σ(T ∗T ) and
0 < α ≤ α

1 |qα(λ)| ≤ C1
α for some C1 > 0,

2 λ 7→ rα(λ) is decreasing and rα(λ) ≥ 0,
3 limα→0 rα(λ) = 0 and
4 α 7→ rα(λ) is increasing,
5 0 < C2 ≤ sup0<α≤α rα(α) ≤ C3 < 1.

regularizing
properties

for converse results

include exclude
k-iterated Tikhonov spectral cut-off
Landweber ν-methods
Showalter
Lardy
modified spectral cut-off

Frederic Weidling Characterizations of Variational Source Conditions



Convergence Rates in Hilbert Spaces
Converse Result

Maxisets and Application
Classical Regularization Theory
Rate of convergence

Rate of convergence
∥∥f † − f δα

∥∥2 ≤ ψ(δ2)

Spectral source conditions for an index function κ:

f † = κ (T ∗T )ω, ‖ω‖ ≤ ρ

 ψκ(δ2) = 4ρ2κ
(

Θ−1
(
δ

ρ

))2
, Θ(t) :=

√
tκ(t).

Variational source conditions (VSC) for a concave index function ψ:

∀f : 4
〈
f †, f † − f

〉
X ≤

∥∥f † − f
∥∥2
X + ψ

(∥∥F (f )− F (f †)
∥∥2
Y

)

How to verify such a condition?
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General strategy for verification
Let Pr ∈ L(X) be a family of orthogonal projection operators such that
for all r

1 f † is κ smooth, i.e.: ∥∥(I − Pr )f †
∥∥
X ≤ κ(r),

2 T is σ ill-posed around f †, i.e.:〈
f †,Pr (f † − f )

〉
≤ σ(r)

∥∥Tf − Tf †
∥∥
Y + Cκ(r)

∥∥f − f †
∥∥
X ,

for all f with ‖f − f †‖ ≤ 4‖f †‖.
Then f † fulfills a variational source condition with

ψ(t) := 4 inf
r

[
(C + 1)2κ(r)2 + σ(r)

√
t
]
.

Compare to Lipschitz stability estimates for T−1:∥∥Pr (f † − f )
∥∥
X ≤ σ̃(r)

∥∥TPr f † − TPr f
∥∥
Y
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Summary and plan

general strategy f † = κ(T∗T )w
assumptions on
regularization

methods

f † VSC with ψκ κ ∈ o(
√

t)
convergence rate ψκ

with weakly
quasioptimal rule

f † ∈ XT
κ

approximation
error of O(κ)

f † ∈ Bs
2,∞ stochastic a-priori rate

heat equation
- Sideways heat equation
- Satellite gradiometry
- a class of mildly IPP

Projection
approach

⇐⇒
supλ>0

1
κ(λ)‖1[0,λ)(T∗T )f †‖X <∞

qualification

∆(f †) dense enough

Converse results

V. Albani, P. Elbau, M.V. de Hoop, O. Scherzer.
Optimal convergence rates results for linear inverse problems in Hilbert spaces.
Numerical Functional Analysis and Optimization 37:521–540, 2016.

approximate
source condition

J. Flemming Solution smooth-
ness of ill-posed equations in
Hilbert spaces: four concepts
and their cross connections
Applicable Analysis 91:1029–
1044, 2012. J. Flemming, B. Hofmann, P. Mathé

Sharp converse results for the regular-
ization error using distance functions
Inverse Problems 21:025006, 2011.example

T∗T = Λ(−∆)

Maxiset
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Parameter choice rules
A parameter choice rule α∗ is called

weakly quasioptimal

if∥∥Rα∗(δ,gobs)gobs − f †
∥∥ ≤ C inf

α>0
sup
‖ξ‖≤δ

∥∥Rα(Tf † + ξ)− f †
∥∥ +O(δ)

strongly quasioptimal

if∥∥Rα∗(δ,gobs)gobs − f †
∥∥ ≤ C sup

‖ξ‖≤δ
inf
α>0

∥∥Rα(Tf † + ξ)− f †
∥∥ +O(δ)

for all ‖gobs − Tf †‖ ≤ δ as δ → 0.
Examples:

discrepancy principle: strongly quasioptimal for methods with
infinite qualification
Lepskĭı: weakly quasioptimal

T. Raus, U. Hämarik. On the quasioptimal regularization parameter choices for solving
ill-posed problems. J. Inv. Ill-Posed Probl. 15:419–439, 2007.
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Interchangeability result

Lemma
For all δ ∈ ∆(f †) := {‖rα(T ∗T )f †‖/‖Rα‖ : 0 < α < α} we have

inf
0<α<α

sup
‖ξ‖≤δ

∥∥Rα(Tf † + ξ)− f †
∥∥ ≤ 2

√
2 sup
‖ξ‖≤δ

inf
0<α≤α

∥∥Rα(Tf † + ξ)− f †
∥∥

Corollary:
In many cases weak and strong quasioptimality coincide.

Theorem
Let κ(rα) ≤ rpκ(α) for some p ≥ 1 and all r ≥ 1. Then for any finite
δ0 > 0 the following is equivalent for all considered methods, all f † 6= 0,
and all weakly quasioptimal parameter choice rules α∗:

1 sup0<α≤α 1
κ(α)2 ‖rα(T ∗T )f †‖2 <∞.

2 sup0<δ≤δ0
1

ψκ(δ2) sup‖ξ‖≤δ
∥∥Rα∗(Tf † + ξ)− f †

∥∥2 <∞.
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Besov spaces as maxisets
Example
Summary

Besov spaces
Maxisets: largest set on which a given methods achieves a given rate of
convergence  XT

κ is maxiset

Theorem
Let ∆ be a Laplace-Beltrami operator on Ω (“sufficiently nice”),
Λ : [0,∞)→ (0,∞) continuous and monotonically decreasing with
limµ→∞ Λ(µ) = 0. Let T : X := L2(Ω)→ Y be bounded such that

T ∗T = Λ(−∆) and set κ(α) = (Λ−1(α))−1/2

Then XT
κs = Bs

2,∞(Ω) for all s > 0 with equivalent norms.

Proof based on:
R. Andreev. Tikhonov and Landweber convergence rates: characterization by interpolation
spaces. Inverse Problems 31:105007, 2015.

Besov spaces Bs
2,∞

K-interpolation spaces of Sobolev spaces Hn

embedding property: Hs ⊂ Bs
2,∞ ⊂ Hs−ε for all 0 < ε < s.

Frederic Weidling Characterizations of Variational Source Conditions
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Example
Summary

Backward heat equation

∂tu = ∆u in S1 × (0, t)
u(·, 0) = f on S1

unknown: initial temperature f
observations: g = u(·, t), final
temperature −π −π/2 0 π/2 π

0

1

2

3

x

t

0

0.2

0.4

0.6

0.8

1

Λ(µ) = exp(−2tµ)

Theorem
The following statements are equivalent for β > 0 and f † 6= 0:

1 f † ∈ B2β
2,∞(S1)

2 f † satisfies a VSC with ψ(t) = C log(3 + t−1)−2β , C > 0.
3 For a weakly quasioptimal parameter choice rule α∗ we have

sup{
∥∥Rα∗gobs − f †

∥∥ :
∥∥gobs − Tf †

∥∥ ≤ δ} = O
(
log(δ−1)−β

)
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Relation to spectral source conditions

Characterization of spectral source conditions known:

f † = ϕβ(T ∗T )w , ϕβ(λ) = (− lnλ)−β ⇔ f † ∈ H2β(S1)

T. Hohage. Regularization of exponentially ill-posed problems. Numerical Functional
Analysis and Optimization 21:439–464, 2000.

Spectral source conditions miss rate for f † ∈ B2β
2,∞ \ H2β .

For given example:

f †(t) =
{
1, |t| < π

2 ,

0, else
=⇒ f̂ †(n) ≈ 1

|n|

=⇒ f † ∈
{
H2β , for β ∈ [0, 1/4) =⇒ rate of O

(
log(δ−1)−β

)

B1/2
2,∞, =⇒ rate of O

(
log(δ−1)−1/4

)
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Summary

general strategy f † = κ(T∗T )w
assumptions on
regularization

methods

f † VSC with ψκ κ ∈ o(
√

t)
convergence rate ψκ

with weakly
quasioptimal rule

f † ∈ XT
κ

approximation
error of O(κ)

f † ∈ Bs
2,∞ stochastic a-priori rate

heat equation
- Sideways heat equation
- Satellite gradiometry
- a class of mildly IPP

Projection
approach

qualification

∆(f †) dense enough

example

T∗T = Λ(−∆)
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Thank you for

your attention!
available at arXiv:1603.05133
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