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Problem Description Regularization Approach Results

Schrödinger equation

Schrödinger equation
Given a potential q and an energy E find the solution to(

−∆ + q
)
u = Eu in R3,

lim
|x |→∞

|x |
(

∂

∂|x | − i
√
E
)
u(x) = 0.

Assumption on the potential q
q ∈ L∞

supp q ⊂ B(r)
q is absorbing, i.e. =(q) ≥ 0

ensures unique solvability
with u ∈ H1

loc
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Problem Description Regularization Approach Results

Near field inverse problem

Total field u = incident field ui
y︸ ︷︷ ︸

known

+ scattered field us
y︸ ︷︷ ︸

unknown

Incident fields are free space
solutions

ui
y (x) = 1

4π
ei
√
E |x−y |

|x − y | .

Measurement is the Green’s function

gq(x , y) = ui
y (x) + us

y (x)

on ∂B(R) with R = |y | > r .
 Repeat for all y ∈ ∂B(R).
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Problem Description Regularization Approach Results

Solution strategy
Define operator F : dom(F )→ L2(∂B(R)× ∂B(R)) =: Y, q 7→ g

Problem is ill-posed  apply Tikhonov regularization of the form

qδα ∈ argmin
q∈dom(F )

Tα,gδ(q), Tα,gδ(q) :=
[
1
2α
∥∥F (q)− gδ

∣∣Y∥∥2 +R(q)
]

Questions:
Is this a regularization strategy?
 depends on R

How good does qδα approximate q†?
 Use a variational source condition

∀q : 〈q∗, q† − q〉 ≤ 1
2∆R(q, q†) + ψ

(∥∥F (q)− F (q†)
∣∣Y∥∥2)

with q∗ ∈ ∂R(q†) to obtain a rate of the form

∆R(qδα, q†) ≤ 4ψ(δ2)

for optimal choice of α.
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Known results

Exponential instability  ψ must be of logarithmic form

Conditional Stability: ‖qj | L∞‖ ≤ c1 and ‖qj |Hs‖ ≤ c2:∥∥q1 − q2
∣∣ L2∥∥ ≤ AE 1/2δ1/2 + B

(
E + ln2(δ−1)

)−s/3
Regularization strategy for R(q) = ‖q | Lp‖p+constraint if p > 3/2
VSC for R(q) = ‖q |Hm‖2+constraint if m > 3/2 of the form

ψ(t) = A
(
ln2(δ−1)

)−max{1, s−m
m+3/2}

frist verification of a vsc for nonlinear pde but enforces smoothness

N. Mandache. Exponential instability in an inverse problem for the Schrödinger equation.
Inverse Problems, 17:1435–1444, 2001.



Problem Description Regularization Approach Results

Known results

Exponential instability  ψ must be of logarithmic form
Conditional Stability: ‖qj | L∞‖ ≤ c1 and ‖qj |Hs‖ ≤ c2:∥∥q1 − q2

∣∣ L2∥∥ ≤ AE 1/2δ1/2 + B
(
E + ln2(δ−1)

)−s/3

Regularization strategy for R(q) = ‖q | Lp‖p+constraint if p > 3/2
VSC for R(q) = ‖q |Hm‖2+constraint if m > 3/2 of the form

ψ(t) = A
(
ln2(δ−1)

)−max{1, s−m
m+3/2}

frist verification of a vsc for nonlinear pde but enforces smoothness

G. Alessandrini. Stable determination of conductivity by boundary measurements.
Applicable Analysis, 27:153–172, 1988.

M. I. Isaev and R. G. Novikov. Effectivized Hölder-logarithmic stability estimates for the
Gel’fand inverse problem. Inverse Problems, 30:095006, 2014.



Problem Description Regularization Approach Results

Known results

Exponential instability  ψ must be of logarithmic form
Conditional Stability: ‖qj | L∞‖ ≤ c1 and ‖qj |Hs‖ ≤ c2:∥∥q1 − q2

∣∣ L2∥∥ ≤ AE 1/2δ1/2 + B
(
E + ln2(δ−1)

)−s/3
Regularization strategy for R(q) = ‖q | Lp‖p+constraint if p > 3/2

VSC for R(q) = ‖q |Hm‖2+constraint if m > 3/2 of the form

ψ(t) = A
(
ln2(δ−1)

)−max{1, s−m
m+3/2}

frist verification of a vsc for nonlinear pde but enforces smoothness

A. Lechleiter, K. S. Kazimierski and M. Karamehmedović Tikhonov regularization in Lp
applied to inverse medium scattering. Inverse Problems, 29:075003, 2013.



Problem Description Regularization Approach Results

Known results

Exponential instability  ψ must be of logarithmic form
Conditional Stability: ‖qj | L∞‖ ≤ c1 and ‖qj |Hs‖ ≤ c2:∥∥q1 − q2

∣∣ L2∥∥ ≤ AE 1/2δ1/2 + B
(
E + ln2(δ−1)

)−s/3
Regularization strategy for R(q) = ‖q | Lp‖p+constraint if p > 3/2
VSC for R(q) = ‖q |Hm‖2+constraint if m > 3/2 of the form

ψ(t) = A
(
ln2(δ−1)

)−max{1, s−m
m+3/2}

frist verification of a vsc for nonlinear pde but enforces smoothness

T. Hohage and F. Weidling. Verification of a variational source condition for acoustic
inverse medium scattering problems. Inverse Problems, 31:075006, 2015.



Problem Description Regularization Approach Results

A wishlist

Penalty term R
of the form R(q) = 1

r ‖q | X‖
r+constraints for some Banach space X

not force solution smoothness
sparsity enforcing (i.e. p close to 1)

Regularization strategy

variational source condition with ψ
Hölder-logarithmic w.r.t. energy E
Unbounded exponent
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How to verify a VSC?

Assume r-convexity of X , then
C∆
r ‖f1 − f2 | X‖r ≤ ∆ 1

r ‖· | X‖
r (f2, f1)

Let f ∗ ∈ ∂ 1
r ‖f
† | X‖r , Pk : X ∗ → X ∗ and quantify

smoothness of the solution

‖(I − Pk)f ∗ | X ∗‖ ≤ κ(k), inf
k∈K

κ(k) = 0

ill-posedness of the problem〈
f ∗,P∗k (f † − f )

〉
≤ σ(k)

∥∥∥F (f †)− F (f )
∣∣∣Y∥∥∥+ γκ(k)

∥∥∥f † − f
∣∣∣X∥∥∥

Then f † fulfills a VSC with index function

ψvsc(t) = inf
k∈K

σ(k)
√
t + 1

r ′

(
2
C∆

) r′
r

(1 + γ)r
′
κ(k)r

′

.

T. Hohage and F. Weidling. Characterizations of Variational Source Conditions, Converse
Results, and Maxisets of Spectral Regularization Methods. SIAM JNA, 55:598–620, 2017.
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Example: Compact Operators
Let X ,Y be Hilbert spaces, F compact with singular system (fj , gj , σj)j∈N

Pk f =
∑
j≤k
〈f , fj〉fj Qkg =

∑
j≤k
〈g , gj〉gj

Smoothness: How fast does

‖(I − Pk)f † | X‖2 =
∑
j>k
|〈f †, fj〉|2 = κ(k)

decay  smoothness of f †

Ill-posedness:

〈f †,Pk(f † − f )〉 ≤ ‖f † | X‖‖Pk(f † − f ) | X‖

≤ ‖f † | X‖ 1
σk︸ ︷︷ ︸

=σ(k)

‖��ZZQk (Ff † − Ff ) | Y‖

decay of singular values =̂ degree of ill-posedness
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Problem Description Regularization Approach Results

Besov spaces as candidates for X

Besov space Bs
p,q


p ∈ [1,∞] integrability
q ∈ [1,∞] fine index
s ∈ R smoothness

Norm via Wavelets

f (x) =
∑

(j,m,l)∈I

〈f , φlj,m〉︸ ︷︷ ︸
λl
j,m

φlj,m(x)

with (φlj,m)(j,m,l)∈I a smooth L2-normalized Daubechies wavelet system.

∥∥f ∣∣Bs
p,q
∥∥ :=

∑
j∈N0

Lj∑
l=1

2jsq2jd( 1
2−

1
p )q

∑
m∈Zd

|λlj,m|
p


q
p


1
q

H. Triebel. Theory of function spaces III, Birkhäuser, 2006.
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Properties
Inclusions: for s ∈ R, ε > 0 and 1 ≤ r ≤ q ≤ ∞

Bs+ε
p,q ⊂ Bs+ε

p,∞ ⊂ Bs
p,1 ⊂ Bs

p,r ⊂ Bs
p,q

Dual space for p, q 6=∞: (
Bs
p,q
)∗ = B−sp′,q′

Relation to other spaces:

Lp − spaces : B0
p,min{p,2} ⊂ Lp ⊂ B0

p,max{p,2}

Sobolev spaces : W s,p = Bs
p,p s 6∈ Z

Hölder-Zygmund spaces : Cs = Bs
∞,∞

Convexity: with Wavelet-norm

Bs
p,q is max{2, p, q}-convex

K. S. Kazimierski On the smoothness and convexity of Besov spaces. Journal of Inverse
and Ill-Posed Problems, 21:411–429, 2013.
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Bs
p,q is max{2, p, q}-convex

K. S. Kazimierski On the smoothness and convexity of Besov spaces. Journal of Inverse
and Ill-Posed Problems, 21:411–429, 2013.



Problem Description Regularization Approach Results

Subgradient Smoothness
Choose X = B0

p,p for 1 < p ≤ 2

1
r ‖f | X‖

r = 1
2

[ ∑
j∈N0

Lj∑
l=1

∑
m∈Zd

2jd( p
2−1)

︸ ︷︷ ︸
→0,if p<2

|λlj,m|
p
] 2

p

If f † is in a smooth subspace of B0
p,p, is there a smooth subspace of

B0
p′,p′ containing f ∗?

Theorem

Let f ∗ ∈ ∂ 1
2‖f
† |B0

p,p‖
2 then

f † ∈ Bs
p,∞ for s > 0 ⇐⇒ f ∗ ∈ Bs(p−1)

p′,∞ .

Proof.

f ∗ =
∑

(j,m,l)∈I

µlj,mφ
l
j,m(x) with µlj,m =

∥∥f † ∣∣B0
p,p
∥∥2−p2jd( p

2−1) λlj,m∣∣λlj,m∣∣2−p .
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Problem Description Regularization Approach Results

Tikhonov functional

Tα,gδ(q) = 1
2α
∥∥F (q)− gδ

∣∣Y∥∥2 + 1
2
∥∥q ∣∣B0

p,p
∥∥2

+ ι{=(·)≥0,supp(·)⊂B(r)}(q) + ι{‖· | L∞‖≤C∞}(q)

Needed for ill-posedness inequality ( CGO-solultions)

Bonus: Weak topologies of B0
p,p and L2 conincide on dom(Tα,·).

Theorem
This strategy is regularizing.

Directly apply results of:
A. Lechleiter, K. S. Kazimierski and M. Karamehmedović Tikhonov regularization in Lp
applied to inverse medium scattering. Inverse Problems, 29:075003, 2013.
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Main result

Theorem (Variational Source Condition)
R > r > 0, E ≥ 1, C∞ > 0, 2 ≥ p > 1, s > 0 and Cs > 0.
Let the true potential q† satisfy:

supp(q†) ⊂ B(r), =(q†) ≥ 0, ‖q† | L∞‖ ≤ C∞, ‖q† |Bs
p,∞‖ ≤ Cs

Then ∃c > 0 such that for all q ∈ dom(Tα,·) the VSC

〈q∗, q† − q〉 ≤ 1
2∆ 1

2‖· |B0
p,p‖2(q, q†)

+cCs(1 + Cs)
(
E 3δ

1
2 +

(
1 + C2

∞
)(

E + ln2(3 + δ−2)
)−µ)

holds true, where

δ := ‖F (q)− F (q†) | L2‖, µ = min
{

2
4− p , s(p − 1)

}
.
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Corollaries

Corollary (Convergence rate)

Let qδα be the solution of the Tikhonov functional for optimal α, then∥∥q† − qδα
∣∣B0

p,p
∥∥ / (1+Cs)

(
E 3δ

1
2 +

(
1 + C2

∞
)(

E + ln2(3 + δ−2)
)−µ)1/2

Corollary (Stability)

Let q1, q2 fulfill the conditions on q†, then∥∥q1 − q2
∣∣B0

p,p
∥∥ / (1+Cs)

(
E 3δ

1
2 +

(
1 + C2

∞
)(

E + ln2(3 + δ−2)
)−µ)1/2
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Problem Description Regularization Approach Results

Summary

Method to recover q from g

Regularization strategy
no smoothness enforcement
sparsity enforcing

Proved rates of convergence
Hölder-logarithmic w.r.t. energy E

x Unbounded exponent

Prize: Add ι{‖· | L∞‖≤C∞}(q)

Thank you for your attention!
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