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Schrodinger equation

Schrédinger equation
Given a potential g and an energy E find the solution to

(—-A+q)u=Eu in R?,
0

l —— —iVE =0.

XILT:OOX<6|X| ,f> U(X) 0

Assumption on the potential g

@ ge L™

ensures unique solvability

® suppq C B(r) with u € H}
ocC

@ g is absorbing, i.e. S(g) >0
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Problem Description

Near field inverse problem

Total field u = incident field uj, + scattered field u;

known unknown

Incident fields are free space
solutions

. 1 ei\/E‘X7Y|

uy (x)

ST

Measurement is the Green's function

8q(x,y) = uy(x) + uy(x)

on OB(R) with R = |y| > r.
~> Repeat for all y € 9B(R).
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@00

Solution strategy

Define operator F: dom(F) — L?(0B(R) x 0B(R)) =: Y, q+— g
Problem is ill-posed ~~ apply Tikhonov regularization of the form

. 1 2
Go € argmin Toz5(q),  Tags(q) = [2I|F(q)—g5}y|| +R(q)}
qgEdom(F) «

Questions:
@ Is this a regularization strategy?
~~ depends on R

@ How good does qi approximate q'?
~~ Use a variational source condition

N 1 , ‘ 2
Vg (qd' - a) < 50r(0.6) +v([F@) - Fa') [ Y])
with g* € 9R(q") to obtain a rate of the form

AR(q), q") < 49(6?)

for optimal choice of a.
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Known results

e Exponential instability ~» 1 must be of logarithmic form

<> N. Mandache. Exponential instability in an inverse problem for the Schrédinger equation.
Inverse Problems, 17:1435-1444, 2001.
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< G. Alessandrini. Stable determination of conductivity by boundary measurements.
Applicable Analysis, 27:153-172, 1988.
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Gel'fand inverse problem. Inverse Problems, 30:095006, 2014.
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Regularization Approach
oeo

Known results

e Exponential instability ~» 1 must be of logarithmic form
e Conditional Stability: [|g;| L>]| < ¢ and ||g; | H?|| <

las — a2 | 12| < AEY25Y2 4+ B(E + In2(571) "

e Regularization strategy for R(q) = ||q | L?||"+constraint if p > 3/2
o VSC for R(q) = |lq| H™||*+constraint if m > 3/2 of the form
(1) = Afin2(sy) " T

frist verification of a vsc for nonlinear pde but enforces smoothness

< T. Hohage and F. Weidling. Verification of a variational source condition for acoustic
inverse medium scattering problems. Inverse Problems, 31:075006, 2015.
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Regularization Approach
[e]e] J

A wishlist

@ Penalty term R

o of the form R(q) = %||q | X'||"+constraints for some Banach space X

e not force solution smoothness
e sparsity enforcing (i.e. p close to 1)

@ Regularization strategy

@ variational source condition with

o Holder-logarithmic w.r.t. energy E
o Unbounded exponent
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Example: Compact Operators

Let X, Y be Hilbert spaces, F compact with singular system (f;, g, 0j)jem

Pof =Y (F.6)f  Qe=>) (g.8)g

Jj<k i<k

@ Smoothness: How fast does

(= PO X% = J(fT (k)

>k

decay ~~» smoothness of T

@ lll-posedness:
(FT, Pe(FT = 1)) < IFT [ X |IPR(FT = £) | X

1
< IIfTI?‘fII;kIIQk(FfrT —FO) 1Yl
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Example: Compact Operators

Let X, Y be Hilbert spaces, F compact with singular system (f;, g, 0j)jem

Pof =Y (F.6)f  Qe=>) (g.8)g

Jj<k i<k

@ Smoothness: How fast does

(= PO X% = J(fT (k)

>k

decay ~~» smoothness of T

o lll-posedness:
1 P(F — £) < I XIPW(FT — )| &)
< I | IR - )19
=a(k)

decay of singular values = degree of ill-posedness
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< H. Triebel. Theory of function spaces Ill, Birkhiuser, 2006.



Regularization Approach
@00

Besov spaces as candidates for X

p € [1,00] integrability
Besov space B, , g € [1,00] fine index
seR smoothness

Norm via Wavelets

Fx)= Y (0] ) 6] m(x)

G,m,Nel N

j.m
with (¢J/',m)(j,m,/)el a smooth L2-normalized Daubechies wavelet system.

g 1
r q

Lj
IF By gll := | D2 D22 ¥Gmalaf S P

JjENy I=1 mezd

< H. Triebel. Theory of function spaces Ill, Birkhiuser, 2006.
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Properties

@ Inclusions: fors e R, e >0and 1< r<g< o
s+e s+e s s s
Bp,q - Bp,oo - Bp,l - Bp,r - Bp,q
@ Dual space for p, g # oo:
s * _ p—s
(Bp,q) - BP'»CI’
@ Relation to other spaces:
. 0 0
LP — spaces : Bp,min{p,z} CcLPC Bp,max{pg}
Sobolev spaces : WP =B, , s¢Z

Holder-Zygmund spaces : C* =B

@ Convexity: with Wavelet-norm

By 4 is max{2, p, q}-convex

< K. S. Kazimierski On the smoothness and convexity of Besov spaces. Journal of Inverse
and lll-Posed Problems, 21:411-429, 2013.
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Regularization Approach
ooe

Subgradient Smoothness

Choose X = Bgﬁp forl<p<?2

L 2
1 o1 ’ (P )
- S jd(5=1) |\ P
el =3 £ 30 5 2]
JjE€ENg I=1 mezd
—0,if p<2
If T is in a smooth subspace of Bg_p, is there a smooth subspace of

0 H *7
B, , containing f*

Theorem

Let f* € O[T | BS || then

fleBs, fors>0 = feBPY.

/
F* = Z Mjl',m¢jl',m(x) with '“Jl',m — ||fT | B‘O),p||2—P2jd(§—1) Ajm
sm,1El { |
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Tikhonov functional

1 2 1 2
Togo(a) =5-||F(a) = &" | V[|" + S la| Byl
+ 1{3()>0,5upp(-)c BN H@) + L)) | 1 <1 (9)

Needed for ill-posedness inequality (~» CGO-solultions)

Bonus: Weak topologies of BY , and L? conincide on dom(T,.).

This strategy is regularizing. \

Directly apply results of:

< A. Lechleiter, K. S. Kazimierski and M. Karamehmedovi¢ Tikhonov regularization in LP
applied to inverse medium scattering. Inverse Problems, 29:075003, 2013.
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Main result

Theorem (Variational Source Condition)

R>r>0,E>1,Cy>0,2>p>1,5s>0and C > 0.
Let the true potential q' satisfy:

supp(q') € B(r), S(¢") 20, [q"|L%]| < Cy g™ B]ooll < G
Then 3c > 0 such that for all g € dom(T,,.) the VSC

(q*,q" —

1
q) < EA%||.|Bg)P||2(qu q)
+eC(1+ Cs)<E35é +(1+C2)(E+n(3+ 52)>_“>

holds true, where

§=IF@) - Fa)I ] u=min{ 2 s(p- 1)),
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Corollaries

Corollary (Convergence rate)

Let q° be the solution of the Tikhonov functional for optimal o, then

_\1/2
ot 122,11 5 (10 C) (51 + (14 C2) (£ 4w +.579) )
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Corollaries

Corollary (Convergence rate)

Let g° be the solution of the Tikhonov functional for optimal c, then

(12
o o2 821 £ 0 (591 + (14 L) (£ + e+ 07) )

Corollary (Stability)

Let g1, qo fulfill the conditions on q', then

N 12
las - a2 | B, ||  (14+G.) (535% + 1+ ) (E+m2(3+67) ")
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Results

Summary

Method to recover g from g

Regularization strategy
no smoothness enforcement
sparsity enforcing
Proved rates of convergence
Holder-logarithmic w.r.t. energy E
X Unbounded exponent

Prize: Add LL)- | Locugcx}(q)

Thank you for your attention!
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