Publications of the Research Group Inverse Problems
Refereed journal papers
The linked pdf-files do not necessarily coincide with the article's published version!
Halla, Martin. 2023. On the approximation of dispersive electromagnetic eigenvalue problems in two dimensions. IMA J. Numer. Anal.43(1): 535-559. doi:10.1093/imanum/drab100
Halla, Martin. 2023. On the Existence and Stability of Modified Maxwell Steklov Eigenvalues. SIAM J. Math. Anal.55(5): 5445-5463. doi:10.1137/22M1509266
Halla, Martin. 2023. Electromagnetic Steklov eigenvalues: existence and distribution in the self-adjoint case. Res. Math. Sci.10(2): Paper No. 18, 24. doi:10.1007/s40687-023-00386-y
Björn Müller, Thorsten Hohage, Damien Fournier, Laurent Gizon. 2023. Quantitative passive imaging by iterative holography: The example of helioseismic holography.
Thorsten Hohage, Pierre Maréchal, Léopold Simar, Anne Vanhems. 2022. A mollifier approach to the deconvolution of probability densities. Econometric Theory. 40pp. doi:10.1017/S0266466622000457
Thorsten Hohage, Frank Werner. 2022. Error estimates for variational regularization of inverse problems with general noise models for data and operator. ETNA57: 127-152. doi:10.1553/etna_vol57s127
Philip Miller, Thorsten Hohage. 2022. Convergence rates for oversmoothing Banach space regularization. ETNA57: 101 - 126. doi:10.1553/etna_vol57s101
Halla, Martin. 2022. Radial complex scaling for anisotropic scalar resonance problems. SIAM J. Numer. Anal.60(5): 2713-2730. doi:10.1137/21M1455747
Halla, Martin. 2022. On the treatment of exterior domains for the time-harmonic equations of stellar oscillations. SIAM J. Math. Anal.54(5): 5268-5290. doi:10.1137/21M1418812
Thorsten Hohage, Christoph Lehrenfeld, Janosch Preuß. 2021. Learned Infinite Elements. SIAM J. Scientific Computing. doi:https://doi.org/10.1137/20M1381757
Philip Miller, Thorsten Hohage. 2021. Maximal Spaces for Approximation Rates in \ell^1-regularization. Numerische Mathematik. doi:10.1007/s00211-021-01225-4
Miller, Philip. 2021. Variational regularization theory based on image space approximation rates. Inverse Problems37(6): 065003 (32pp. doi:10.1088/1361-6420/abf5bb
Martin Halla, Thorsten Hohage. 2021. On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations. SIAM J. Math. Anal.53(4): 4068-4095. doi:10.1137/20M1348558
Xiaoxu Xu, Bo Zhang, Haiwen Zhang. 2020. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems and Imaging14: 489-510. doi:10.3934/ipi.2020023
Thorsten Hohage, Hans-Georg Raumer, Carsten Spehr. 2020. Uniqueness of an inverse source problem in experimental aeroacoustics. Inverse Problems36: 075012 (18pp. doi:10.1088/1361-6420/ab8484
Simon Maretzke, Thorsten Hohage. 2020. Constrained Reconstructions in X-ray Phase Contrast Imaging: Uniqueness, Stability and Algorithms. In Nanoscale Photonic Imaging. 134: Springer. 377-403. doi:https://doi.org/10.1007/978-3-030-34413-9_14
Janosch Preuß, Thorsten Hohage, Christoph Lehrenfeld. 2020. Sweeping preconditioners for stratified media in the presence of reflections. Springer Nature Partial Differential Equations and Applications1: 17. doi:10.1007/s42985-020-00019-x
Hans-Georg Raumer, Carsten Spehr, Thorsten Hohage, Daniel Ernst. 2020. Weighted Data Spaces for Correlation Based Array Imaging in Experimental Aeroacoustics. Journal of Sound and Vibration. doi:10.1016/j.jsv.2020.115878
Frederic Weidling, Benjamin Sprung, Thorsten Hohage. 2020. Optimal convergence rates for Tikhonov regularization in Besov spaces. SIAM J. Numer. Anal.58: 21-47. doi:10.1137/18M1178098
Cong Shi, Claus Ropers, Thorsten Hohage. 2020. Density Matrix Reconstructions in Ultrafast Transmission Electron Microscopy: Uniqueness, Stability, and Convergence Rates. Inverse Problems36: 025005. doi:10.1088/1361-6420/ab539a
Bo Zhang, Haiwen Zhang. 2020. An Approximate Factorization Method for Inverse Acoustic Scattering with Phaseless Total-Field Data. SIAM J. Appl. Math.80: 2271-2298. doi:10.1137/19M1280612
Alexey Agaltsov, Thorsten Hohage, Roman Novikov. 2020. Global uniqueness in a passive inverse problem of helioseismology. Inverse Problems36: 055004 (21pp. doi:10.1088/1361-6420/ab77d9
Vo, Anh Khoa, Le Thi, Phuong Ngoc, Nguyen, Thanh Long. 2019. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Eq. and Control Theory8(2): 359-395. doi:10.3934/eect.2019019
Thorsten Hohage, Roman G Novikov. 2019. Inverse wave propagation problems without phase information. Inverse Problems35(7): 070301. doi:10.1088/1361-6420/ab1aaf
Thorsten Hohage, Philip Miller. 2019. Optimal convergence rates for sparsity promoting wavelet-regularization in Besov spaces. Inverse Problems35: 65005 (27pp. doi:10.1088/1361-6420/ab0b15
Nguyen, Huy Tuan, Vo, Anh Khoa, Mai, Thanh Nhat Truong, Tran, The Hung, Mach, Nguyet Minh. 2019. Application of the cut-off projection to solve a backward heat conduction problem in a two-slab composite system. Inv. Prob. Science Eng.27: doi:10.1080/17415977.2018.1470623
Julian Eckhardt, Ralf Hiptmair, Thorsten Hohage, Henrik Schumacher, Max Wardetzky. 2019. Elastic energy regularization for inverse obstacle scattering problems. Inverse Problems35: 104009 (20pp. doi:10.1088/1361-6420/ab3034
Huy Tuan Nguyen,, Vo Anh Khoa, Van Au Vo. 2019. Analysis of a Quasi-Reversibility Method for a Terminal Value Quasi-Linear Parabolic Problem with Measurements Read More: https://epubs.siam.org/doi/abs/10.1137/18M1174064. SIAM J. Math. Anal.51(1): doi:10.1137/18M1174064
Helen Schomburg, Thorsten Hohage. 2019. Formulation and Efficient Computation of l1- and Smoothness Penalized Estimates for Microstructure-Informed Tractography. IEEE Trans. Med. Imag.38: 1899-1909. doi:10.1109/TMI.2019.2902787
Fenglong Qu, Bo Zhang, Haiwen Zhang. 2019. A Novel Integral Equation for Scattering by Locally Rough Surfaces and Application to the Inverse Problem: The Neumann Case. SIAM J. Sc. Comp.41: A3673-A3702. doi:10.1137/19M1240745
Benjamin Sprung. 2019. Upper and lower bounds for the Bregman divergence. J. Inequal. Appl.4: doi:10.1186/s13660-018-1953-y
Benjamin Sprung, Thorsten Hohage. 2019. Higher order convergence rates for Bregman iterated variational regularization of inverse problems. Numer. Math.141: 215-252. doi:10.1007/s00211-018-0987-x
Zickert, Gustav, Maretzke, Simon. 2018. Cryogenic electron tomography reconstructions from phaseless data. Inverse Problems34: 124001. doi:10.1088/1361-6420/aade22
Tristan van Leeuwen, Simon Maretzke, K. Joost Batenburg. 2018. Automatic alignment for three-dimensional tomographic reconstruction. Inverse Problems34(2): 024004. doi:10.1088/1361-6420/aaa0f8
Maretzke, Simon. 2018. Locality estimates for Fresnel-wave-propagation and stability of near-field X-ray propagation imaging with finite detectors. Inverse problems34(12): 124004. doi:10.1088/1361-6420/aae78f
Alexey Agaltsov, Thorsten Hohage, Roman Novikov. 2018. Monochromatic identities for the Green function and uniqueness results for passive imaging. SIAM J. Appl. Math.78(5): 2865-2890. doi:10.1137/18M1182218
Alexey Agaltsov, Thorsten Hohage, Roman Novikov. 2018. An iterative approach to monochromatic phaseless inverse scattering. Inverse Problems35(2): 024001. doi:10.1088/1361-6420/aaf097
Zhengguo Tan, Thorsten Hohage, Oleksandr Kalentev , Xiaoqing Wang, Dirk Voit, Klaus-Dietmar Merboldt, Jens Frahm. 2017. An eigenvalue approach for the automatic scaling of unknowns in model-based reconstructions: application to real-time phase-contrast flow MRI. NMR in Biomedicine. e3835-n/a. doi:10.1002/nbm.3835
Thorsten Hohage, Frederic Weidling. 2017. Characterizations of variational source conditions, converse results, and maxisets of spectral regularization methods. SIAM J. Numer. Anal.55(2): 598-620. doi:10.3934/ipi.2017010
Simon Maretzke, Thorsten Hohage. 2017. Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging. SIAM J. Appl. Math.77(2): 384-408. doi:10.1137/16M1086170
Laurent Gizon, Hélène Barucq, Marc Duruflé, Chris Hanson, Michael Leguèbe, Aaron Birch, Juliette Chabassier, Damien Fournier, Thorsten Hohage, Emanuele Papini. 2017. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows. Astronomy & Astrophysics600: A35. doi:10.1051/0004-6361/201629470
Katharina E. Priebe, Christopher Rathje, Sergey V. Yalunin, Thorsten Hohage, Armin Feist, Sascha Schäfer, Claus Ropers. 2017. Attosecond Electron Pulse Trains and Quantum State Reconstruction in Ultrafast Transmission Electron Microscopy. Nature Photonics11: 793-797. doi:10.1038/s41566-017-0045-8
Helen Schomburg, Thorsten Hohage. 2017. Semi-Local Tractography Strategies Using Neighborhood Information. Medical Image Analysis38: 165-183. doi:10.1016/j.media.2017.03.003
Frederic Weidling, Thorsten Hohage. 2017. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging11(1): 203-220. doi:10.3934/ipi.2017010
Thorsten Hohage, Frank Werner. 2016. Inverse Problems with Poisson Data: statistical regularization theory, applications and algorithms. Inverse Problems32: 093001:56pp. doi:10.1088/0266-5611/32/9/093001
Martin Halla, Thorsten Hohage, Lothar Nannen, Joachim Schöberl. 2016. Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numer. Math.133: Springer Berlin Heidelberg. 103-139. doi:10.1007/s00211-015-0739-0
Maretzke, S., Bartels, M., Krenkel, M., Salditt, T., Hohage, T.. 2016. Regularized Newton methods for x-ray phase contrast and general imaging problems. Optics Express24: 6490-6506. doi:10.1364/OE.24.006490
Damien Fournier, Laurent Gizon, Martin Holzke, Thorsten Hohage. 2016. Pinsker estimators for local helioseismology: inversion of travel times for mass-conserving flows. Inverse Problems32(10): 105002:27pp. doi:10.1088/0266-5611/32/10/105002
Claudia König, Frank Werner, Thorsten Hohage. 2016. Convergence Rates for Exponentially Ill-Posed Inverse Problems with Impulsive Noise. SIAM J. Numer. Anal.54(1): 341-360. doi:10.1137/15M1022252
Werner, Frank. 2015. On convergence rates for iteratively regularized Newton-type methods under a Lipschitz-type nonlinearity condition. J. Inverse Ill-Posed Probl.23(1): 75-84. doi:10.1515/jiip-2013-0074
Thorsten Hohage, Lothar Nannen. 2015. Convergence of infinite element methods for scalar waveguide problems. BIT Numer. Math.55(1): 215-254. doi:0.1007/s10543-014-0525-x
Maretzke, S.. 2015. A uniqueness result for propagation-based phase contrast imaging from a single measurement. Inverse Problems31(6): 065003:16pp. doi:10.1088/0266-5611/31/6/065003
Hohage, Thorsten, Weidling, Frederic. 2015. Verification of a variational source condition for acoustic inverse medium scattering problems. Inverse Problems31(7): 075006:14pp. doi:10.1088/0266-5611/31/7/075006
Hohage, T., Rügge, C.. 2015. A coherence enhancing penalty for diffusion MRI: Regularizing property and discrete approximation. SIAM J. Imaging Sci.8(3): 1874-1893. doi:10.1137/140998767
C. Homann, T. Hohage, J. Hagemann, A.-L. Robisch, T. Salditt. 2015. Validity of the empty-beam correction in near-field imaging. Physical Review A91: 013821. doi:10.1103/PhysRevA.91.013821
Thorsten Hohage, Frank Werner. 2014. Convergence rates for inverse problems with impulsive noise. SIAM J. Numer. Anal.52(3): 1203-1221. doi:10.1137/130932661
Sophie Frick, Thorsten Hohage, Axel Munk. 2014. Asymptotic laws for change point estimation in inverse regression. Statistica Sinica24(2): 555-575. doi:10.5705/ss.2012.007
J. Hagemann, A. L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens, H. Suhonen, T. Salditt. 2014. Wave Front Reconstruction for Extended hard X-ray Beams from a set of Detection Planes. Optics Express22: 11552-11569. doi:10.1364/OE.22.011552
Fabian Dunker, Thorsten Hohage. 2014. On parameter identification in stochastic differential equations by penalized maximum likelihood. Inverse Problems30(9): 095001:20pp. doi:10.1088/0266-5611/30/9/095001
Fabian Dunker, Jean-Pierre Florens, Thorsten Hohage, Jan Johannes, Enno Mammen. 2014. Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression. Journal of Econometrics178: 444-455. doi:10.1016/j.jeconom.2013.06.001
Damien Fournier, Laurent Gizon, Thorsten Hohage, Aaron Birch. 2014. Generalization of the noise model for time-distance helioseismology. Astronomy & Astrophysics567: A317:20pp. doi:10.1051/0004-6361/201423580
Thorsten Hohage, Sofiane Soussi. 2013. Riesz bases and Jordan form of the translation operator in semi-infinite periodic waveguides. J. Math. Pures Appl. (9100(1): 113-135. doi:10.1016/j.matpur.2012.10.013
T. Hohage, F. Werner. 2013. Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data. Numerische Mathematik123(4): 745-779. doi:10.1007/s00211-012-0499-z
Lothar Nannen, Thorsten Hohage, Achim Schädle, Joachim Schöberl. 2013. Exact sequences of high order Hardy space inifinite elements for exterior Maxwell problems. SIAM J. Sci. Comput.35(2): A1024-A1048. doi:10.1137/110860148
R. Stück, M. Burger, T. Hohage. 2012. The iteratively regularized Gauss-Newton method with convex constraints and applications in 4Pi microscopy. Inverse Problems28(1): 015012:16pp. doi:10.1088/0266-5611/28/1/015012
J Jackiewicz, A C Birch, L Gizon, S Hanasoge, T Hohage, J B Ruffio, M Svanda. 2012. Multichannel Three-dimensional OLA Inversion for Local Helioseismology Solar Physics. Solar Phys276: 19-33. doi:10.1007/s11207-011-9873-8
F. Werner, T. Hohage. 2012. Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data. Inverse Problems28(10): 104004:15pp. doi:10.1088/0266-5611/28/10/104004
A. Paarmann, M. Gulde, M. Müller, Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, R. Ernstorfer. 2012. Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study. Journal of Applied Physics112: 113109. doi:10.1063/1.4768204
T. Hohage, S. Langer. 2010. Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems. Inverse Problems26(7): 074011:15pp. doi:10.1088/0266-5611/26/7/074011
T. Hohage, L. Nannen. 2009. Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal.47(2): 972-996. doi:10.1137/070708044
Langer, Stefan. 2009. Complexity analysis of the iteratively regularized Gauss-Newton method with inner CG-iteration. J. Inverse Ill-Posed Probl.17(9): 871-890. doi:10.1515/JIIP.2009.051
H. Harbrecht, T. Hohage. 2009. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Probl. Imaging3(2): 353-371. doi:10.3934/ipi.2009.3.353
F. Bauer, T. Hohage, A. Munk. 2009. Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal.47(3): 1827-1846. doi:10.1137/080721789
D. S. Gilliam, T. Hohage, X. Ji, R. Ruymgaart. 2009. The Frechet derivative of an analytic function of a bounded operator with some applications. Int. J. Math. Math. Sci.. Art. ID 239025, 17. doi:10.1155/2009/239025
T. Hohage, M. Pricop. 2008. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Probl. Imaging2(2): 271-290. doi:10.3934/ipi.2008.2.271
T. Hohage, K. Giewekemeyer, T. Salditt. 2008. Iterative reconstruction of a refractive index from x-ray or neutron reflectivity measurements. Physical Review E.77: 051604. doi:10.1103/PhysRevE.77.051604
M. Uecker, T. Hohage, K. T. Block, J. Frahm. 2008. Image Reconstruction by Regularized Nonlinear Inversion - Joint Estimation of Coil Sensitivities and Image Content. Magnetic Resonance in Medicine60: 674-682. doi:10.1002/mrm.21691
F. Schmidt, T. Hohage, R. Klose, A. Schädle, L. Zschiedrich. 2008. Pole condition: a numerical method for Helmholtz-type scattering problems with inhomogeneous exterior domain. J. Comput. Appl. Math.218(1): 61-69. doi:10.1016/j.cam.2007.04.046
T. Hohage, M.-L. Rapun, F.-J. Sayas. 2007. Detecting corrosion using thermal measurements. Inverse Problems23(1): 53-72. doi:10.1088/0266-5611/23/1/003
S. Langer, T. Hohage. 2007. Convergence analysis of an inexact iteratively regularized Gauss-Newton method under general source conditions. J. Inverse Ill-Posed Probl.15(3): 311-327. doi:10.1515/jiip.2007.017
S. Hein, T. Hohage, W. Koch, J. Schöberl. 2007. Acoustic resonances in a high-lift configuration. J. Fluid Mech.582: 179-202. doi:10.1017/S0022112007005770
N. Bissantz, T. Hohage, A. Munk, F. Ruymgaart. 2007. Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal.45(6): 2610-2636. doi:10.1137/060651884
H. Harbrecht, T. Hohage. 2007. Fast methods for three-dimensional inverse obstacle scattering problems. J. Integral Equations Appl.19(3): 237-260. doi:10.1216/jiea/1190905486
T. Hohage. 2006. Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comput. Phys.214(1): 224-238. doi:10.1016/j.jcp.2005.09.025
T. Hohage, F.-J. Sayas. 2005. Numerical solution of a heat diffusion problem by boundary element methods using the Laplace transform. Numerische Mathematik102(1): 67-92. doi:10.1007/s00211-005-0645-y
T. Arens, T. Hohage. 2005. On radiation conditions for rough surface scattering problems. IMA J. Appl. Math.70(6): 839-847. doi:10.1093/imamat/hxh065
F. Bauer, T. Hohage. 2005. A Lepskij-type stopping rule for regularized Newton methods. Inverse Problems21(6): 1975-1991. doi:10.1088/0266-5611/21/6/011
S. Hein, T. Hohage, W. Koch. 2004. On resonances in open systems. J. Fluid Mech.506: 255-284. doi:10.1017/S0022112004008584
N. Bissantz, T. Hohage, A. Munk. 2004. Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise. Inverse Problems20(6): 1773-1789. doi:10.1088/0266-5611/20/6/005
T. Hohage, F. Schmidt, L. Zschiedrich. 2003. Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method. SIAM J. Math. Anal.35(3): 547-560. doi:10.1137/S0036141002406485
T. Hohage, F. Schmidt, L. Zschiedrich. 2003. Solving time-harmonic scattering problems based on the pole condition. I. Theory. SIAM J. Math. Anal.35(1): 183-210. doi:10.1137/S0036141002406473
Selected conference proceedings
Thorsten Hohage. 2005. An iterative method for inverse medium scattering problems based on factorization of the far field operator. In The 2nd International Converence on Inverse Problems: Recent Theoretical Development and Numerical Approaches. Fudan University, Shanghai. 12: IOP. 33-45.
Thorsten Hohage, Frank Schmidt, Lin Zschiedrich. 2002. A new method for the solution of scattering problems. In Proceedings of the European Symposium on Numerical Methods in Electromagnetics: JEE 02. 251-256. ONERA, Toulouse.