Institut für Numerische und Angewandte Mathematik - Arbeitsgruppe Inverse Probleme
Veröffentlichungen der Arbeitsgruppe Inverse Probleme

Referierte Artikel in Zeitschriften

Die verlinkten pdf-Dateien stimmen nicht zwingend mit der veröffentlichten Version des Artikels überein!

  • Thorsten Hohage, Frederic Weidling. 2017. Characterizations of variational source conditions, converse results, and maxisets of spectral regularization methods. SIAM J. Numer. Anal. 55(2): 598-620.
    doi:10.3934/ipi.2017010    download   
  • Simon Maretzke, Thorsten Hohage. 2017. Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging. SIAM J. Appl. Math. 77(2): 384-408.
    doi:10.1137/16M1086170    download   
  • Laurent Gizon, Hélène Barucq, Marc Duruflé, Chris Hanson, Michael Leguèbe, Aaron Birch, Juliette Chabassier, Damien Fournier, Thorsten Hohage, Emanuele Papini. 2017. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows. Astronomy & Astrophysics 600: A35.
    doi:10.1051/0004-6361/201629470    download   
  • Helen Schomburg, Thorsten Hohage. 2017. Semi-Local Tractography Strategies Using Neighborhood Information. Medical Image Analysis 38: 165-183.
    doi:10.1016/    download   
  • Frederic Weidling, Thorsten Hohage. 2017. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging 11(1): 203-220.
    doi:10.3934/ipi.2017010    download   
  • Thorsten Hohage, Frank Werner. 2016. Inverse Problems with Poisson Data: statistical regularization theory, applications and algorithms. Inverse Problems 32: 093001:56pp.
    doi:10.1088/0266-5611/32/9/093001    download   
  • Martin Halla, Thorsten Hohage, Lothar Nannen, Joachim Schöberl. 2016. Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numer. Math. 133: Springer Berlin Heidelberg. 103-139.
    doi:10.1007/s00211-015-0739-0    download   
  • Maretzke, S., Bartels, M., Krenkel, M., Salditt, T., Hohage, T.. 2016. Regularized Newton methods for x-ray phase contrast and general imaging problems. Optics Express 24: 6490-6506.
    doi:10.1364/OE.24.006490    download   
  • Damien Fournier, Laurent Gizon, Martin Holzke, Thorsten Hohage. 2016. Pinsker estimators for local helioseismology: inversion of travel times for mass-conserving flows. Inverse Problems 32(10): 105002:27pp.
    doi:10.1088/0266-5611/32/10/105002    download   
  • Claudia König, Frank Werner, Thorsten Hohage. 2016. Convergence Rates for Exponentially Ill-Posed Inverse Problems with Impulsive Noise. SIAM J. Numer. Anal. 54(1): 341-360.
    doi:10.1137/15M1022252    download   
  • Werner, Frank. 2015. On convergence rates for iteratively regularized Newton-type methods under a Lipschitz-type nonlinearity condition. J. Inverse Ill-Posed Probl. 23(1): 75-84.
    doi:10.1515/jiip-2013-0074    download   
  • Thorsten Hohage, Lothar Nannen. 2015. Convergence of infinite element methods for scalar waveguide problems. BIT Numer. Math. 55(1): 215-254.
    doi:0.1007/s10543-014-0525-x    download   
  • Maretzke, S.. 2015. A uniqueness result for propagation-based phase contrast imaging from a single measurement. Inverse Problems 31(6): 065003:16pp.
    doi:10.1088/0266-5611/31/6/065003    download   
  • Hohage, Thorsten, Weidling, Frederic. 2015. Verification of a variational source condition for acoustic inverse medium scattering problems. Inverse Problems 31(7): 075006:14pp.
    doi:10.1088/0266-5611/31/7/075006    download   
  • Hohage, T., Rügge, C.. 2015. A coherence enhancing penalty for diffusion MRI: Regularizing property and discrete approximation. SIAM J. Imaging Sci. 8(3): 1874-1893.
    doi:10.1137/140998767    download   
  • C. Homann, T. Hohage, J. Hagemann, A.-L. Robisch, T. Salditt. 2015. Validity of the empty-beam correction in near-field imaging. Physical Review A 91: 013821.
    doi:10.1103/PhysRevA.91.013821    download   
  • Thorsten Hohage, Frank Werner. 2014. Convergence rates for inverse problems with impulsive noise. SIAM J. Numer. Anal. 52(3): 1203-1221.
    doi:10.1137/130932661    download   
  • Sophie Frick, Thorsten Hohage, Axel Munk. 2014. Asymptotic laws for change point estimation in inverse regression. Statistica Sinica 24(2): 555-575.
    doi:10.5705/ss.2012.007    download   
  • J. Hagemann, A. L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens, H. Suhonen, T. Salditt. 2014. Wave Front Reconstruction for Extended hard X-ray Beams from a set of Detection Planes. Optics Express 22: 11552-11569.
    doi:10.1364/OE.22.011552    download   
  • Fabian Dunker, Thorsten Hohage. 2014. On parameter identification in stochastic differential equations by penalized maximum likelihood. Inverse Problems 30(9): 095001:20pp.
    doi:10.1088/0266-5611/30/9/095001    download   
  • Fabian Dunker, Jean-Pierre Florens, Thorsten Hohage, Jan Johannes, Enno Mammen. 2014. Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression. Journal of Econometrics 178: 444-455.
    doi:10.1016/j.jeconom.2013.06.001    download   
  • Damien Fournier, Laurent Gizon, Thorsten Hohage, Aaron Birch. 2014. Generalization of the noise model for time-distance helioseismology. Astronomy & Astrophysics 567: A317:20pp.
    doi:10.1051/0004-6361/201423580    download   
  • Thorsten Hohage, Sofiane Soussi. 2013. Riesz bases and Jordan form of the translation operator in semi-infinite periodic waveguides. J. Math. Pures Appl. (9 100(1): 113-135.
    doi:10.1016/j.matpur.2012.10.013    download   
  • T. Hohage, F. Werner. 2013. Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data. Numerische Mathematik 123(4): 745-779.
    doi:10.1007/s00211-012-0499-z    download   
  • Lothar Nannen, Thorsten Hohage, Achim Schädle, Joachim Schöberl. 2013. Exact sequences of high order Hardy space inifinite elements for exterior Maxwell problems. SIAM J. Sci. Comput. 35(2): A1024-A1048.
    doi:10.1137/110860148    download   
  • R. Stück, M. Burger, T. Hohage. 2012. The iteratively regularized Gauss-Newton method with convex constraints and applications in 4Pi microscopy. Inverse Problems 28(1): 015012:16pp.
    doi:10.1088/0266-5611/28/1/015012    download   
  • J Jackiewicz, A C Birch, L Gizon, S Hanasoge, T Hohage, J B Ruffio, M Svanda. 2012. Multichannel Three-dimensional OLA Inversion for Local Helioseismology Solar Physics. Solar Phys 276: 19-33.
    doi:10.1007/s11207-011-9873-8    download   
  • F. Werner, T. Hohage. 2012. Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data. Inverse Problems 28(10): 104004:15pp.
    doi:10.1088/0266-5611/28/10/104004    download   
  • A. Paarmann, M. Gulde, M. Müller, Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, R. Ernstorfer. 2012. Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study. Journal of Applied Physics 112: 113109.
    doi:10.1063/1.4768204    download   
  • T. Hohage, S. Langer. 2010. Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems. Inverse Problems 26(7): 074011:15pp.
    doi:10.1088/0266-5611/26/7/074011    download   
  • T. Hohage, L. Nannen. 2009. Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal. 47(2): 972-996.
    doi:10.1137/070708044    download   
  • Langer, Stefan. 2009. Complexity analysis of the iteratively regularized Gauss-Newton method with inner CG-iteration. J. Inverse Ill-Posed Probl. 17(9): 871-890.
    doi:10.1515/JIIP.2009.051    download   
  • H. Harbrecht, T. Hohage. 2009. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Probl. Imaging 3(2): 353-371.
    doi:10.3934/ipi.2009.3.353    download   
  • F. Bauer, T. Hohage, A. Munk. 2009. Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal. 47(3): 1827-1846.
    doi:10.1137/080721789    download   
  • D. S. Gilliam, T. Hohage, X. Ji, R. Ruymgaart. 2009. The Frechet derivative of an analytic function of a bounded operator with some applications. Int. J. Math. Math. Sci.. Art. ID 239025, 17.
  • T. Hohage, M. Pricop. 2008. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Probl. Imaging 2(2): 271-290.
    doi:10.3934/ipi.2008.2.271    download   
  • T. Hohage, K. Giewekemeyer, T. Salditt. 2008. Iterative reconstruction of a refractive index from x-ray or neutron reflectivity measurements. Physical Review E. 77: 051604.
  • M. Uecker, T. Hohage, K. T. Block, J. Frahm. 2008. Image Reconstruction by Regularized Nonlinear Inversion - Joint Estimation of Coil Sensitivities and Image Content. Magnetic Resonance in Medicine 60: 674-682.
    doi:10.1002/mrm.21691    download   
  • F. Schmidt, T. Hohage, R. Klose, A. Schädle, L. Zschiedrich. 2008. Pole condition: a numerical method for Helmholtz-type scattering problems with inhomogeneous exterior domain. J. Comput. Appl. Math. 218(1): 61-69.
  • T. Hohage, M.-L. Rapun, F.-J. Sayas. 2007. Detecting corrosion using thermal measurements. Inverse Problems 23(1): 53-72.
    doi:10.1088/0266-5611/23/1/003    download   
  • S. Langer, T. Hohage. 2007. Convergence analysis of an inexact iteratively regularized Gauss-Newton method under general source conditions. J. Inverse Ill-Posed Probl. 15(3): 311-327.
    doi:10.1515/jiip.2007.017    download   
  • S. Hein, T. Hohage, W. Koch, J. Schöberl. 2007. Acoustic resonances in a high-lift configuration. J. Fluid Mech. 582: 179-202.
    doi:10.1017/S0022112007005770    download   
  • N. Bissantz, T. Hohage, A. Munk, F. Ruymgaart. 2007. Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal. 45(6): 2610-2636.
    doi:10.1137/060651884    download   
  • H. Harbrecht, T. Hohage. 2007. Fast methods for three-dimensional inverse obstacle scattering problems. J. Integral Equations Appl. 19(3): 237-260.
    doi:10.1216/jiea/1190905486    download   
  • T. Hohage. 2006. Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comput. Phys. 214(1): 224-238.
    doi:10.1016/    download   
  • T. Hohage, F.-J. Sayas. 2005. Numerical solution of a heat diffusion problem by boundary element methods using the Laplace transform. Numerische Mathematik 102(1): 67-92.
    doi:10.1007/s00211-005-0645-y    download   
  • T. Arens, T. Hohage. 2005. On radiation conditions for rough surface scattering problems. IMA J. Appl. Math. 70(6): 839-847.
  • F. Bauer, T. Hohage. 2005. A Lepskij-type stopping rule for regularized Newton methods. Inverse Problems 21(6): 1975-1991.
    doi:10.1088/0266-5611/21/6/011    download   
  • S. Hein, T. Hohage, W. Koch. 2004. On resonances in open systems. J. Fluid Mech. 506: 255-284.
  • N. Bissantz, T. Hohage, A. Munk. 2004. Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise. Inverse Problems 20(6): 1773-1789.
  • T. Hohage, F. Schmidt, L. Zschiedrich. 2003. Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method. SIAM J. Math. Anal. 35(3): 547-560.
    doi:10.1137/S0036141002406485    download   
  • T. Hohage, F. Schmidt, L. Zschiedrich. 2003. Solving time-harmonic scattering problems based on the pole condition. I. Theory. SIAM J. Math. Anal. 35(1): 183-210.
    doi:10.1137/S0036141002406473    download   


  • Christoph Ruegge. 2015. Spatial Coherence Enhancing Reconstructions for High Angular Resolution Diffusion MRI. University of Göttingen.
  • Carolin Homann. 2015. Phase retrieval problems in x-ray physics: From modeling to efficient algorithms. University of Göttingen.
  • Frank Werner. 2012. Inverse problems with Poisson data: Tikhonov-type regularization and iteratively regularized Newton methods. Universität Göttingen. download
  • Fabian Dunker. 2012. Nonlinear Inverse Problems with Noisy Operators and Applications in Nonparametric Instrumental Regression. Universität Göttingen.
  • Rorbert Stück. 2011. Semi-blind Deconvolution in 4Pi micrscopy. Universität Göttingen.
  • Felix Schenk. 2011. Optimization of resonances for multilayer x-ray resonators. Universität Göttingen.
  • Martin Uecker. 2009. Nonlinear Reconstruction Methods for Parallel Magnetic Resonance Imaging. Universität Göttingen. download
  • Lothar Nannen. 2008. Hardy-Raum Methoden zur numerischen Lösung von Streu- und Resonanzproblemen auf unbeschränkten Gebieten. Universität Göttingen. download
  • Stefan Langer. 2007. Preconditioned Newton methods for ill-posed problems. Universität Göttingen. download
  • Mihaela Pricop. 2007. Tikhonov regularization in Hilbert scales for nonlinear statistical inverse problems. Universität Göttingen. download

Ausgewählte Konferenzbeiträge

  • Thorsten Hohage. 2005. An iterative method for inverse medium scattering problems based on factorization of the far field operator. In The 2nd International Converence on Inverse Problems: Recent Theoretical Development and Numerical Approaches. Fudan University, Shanghai12: IOP. 33-45. download
  • Thorsten Hohage, Frank Schmidt, Lin Zschiedrich. 2002. A new method for the solution of scattering problems. In Proceedings of the European Symposium on Numerical Methods in Electromagnetics: JEE 02. 251-256. ONERA, Toulouse. download

Eingereichte Arbeiten

Alle Publikationen als BibTeX-Datei

Arbeitsgruppe Inverse Probleme


   Arbeitsgruppe Inverse Probleme
   Prof. Dr. Thorsten Hohage
   Lotzestraße 16-18
   D-37083 Göttingen

   Antje Scholz
   Raum 119
   Tel: +49 551 39 4529
   Fax: +49 551 39 3944