Institut für Numerische und Angewandte Mathematik - Arbeitsgruppe Inverse Probleme
Veröffentlichungen der Arbeitsgruppe Inverse Probleme

Referierte Artikel in Zeitschriften

Die verlinkten pdf-Dateien stimmen nicht zwingend mit der veröffentlichten Version des Artikels überein!

  • Zhengguo Tan, Thorsten Hohage, Oleksandr Kalentev , Xiaoqing Wang, Dirk Voit, Klaus-Dietmar Merboldt, Jens Frahm. 2017. An eigenvalue approach for the automatic scaling of unknowns in model-based reconstructions: application to real-time phase-contrast flow MRI. NMR in Biomedicine. e3835-n/a.
    doi:10.1002/nbm.3835    download   
  • Thorsten Hohage, Frederic Weidling. 2017. Characterizations of variational source conditions, converse results, and maxisets of spectral regularization methods. SIAM J. Numer. Anal. 55(2): 598-620.
    doi:10.3934/ipi.2017010    download   
  • Simon Maretzke, Thorsten Hohage. 2017. Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging. SIAM J. Appl. Math. 77(2): 384-408.
    doi:10.1137/16M1086170    download   
  • Laurent Gizon, Hélène Barucq, Marc Duruflé, Chris Hanson, Michael Leguèbe, Aaron Birch, Juliette Chabassier, Damien Fournier, Thorsten Hohage, Emanuele Papini. 2017. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows. Astronomy & Astrophysics 600: A35.
    doi:10.1051/0004-6361/201629470    download   
  • Katharina E. Priebe, Christopher Rathje, Sergey V. Yalunin, Thorsten Hohage, Armin Feist, Sascha Schäfer, Claus Ropers. 2017. Attosecond Electron Pulse Trains and Quantum State Reconstruction in Ultrafast Transmission Electron Microscopy. Nature Photonics 11: 793-797.
    doi:10.1038/s41566-017-0045-8    download   
  • Helen Schomburg, Thorsten Hohage. 2017. Semi-Local Tractography Strategies Using Neighborhood Information. Medical Image Analysis 38: 165-183.
    doi:10.1016/    download   
  • Frederic Weidling, Thorsten Hohage. 2017. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging 11(1): 203-220.
    doi:10.3934/ipi.2017010    download   
  • Thorsten Hohage, Frank Werner. 2016. Inverse Problems with Poisson Data: statistical regularization theory, applications and algorithms. Inverse Problems 32: 093001:56pp.
    doi:10.1088/0266-5611/32/9/093001    download   
  • Martin Halla, Thorsten Hohage, Lothar Nannen, Joachim Schöberl. 2016. Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numer. Math. 133: Springer Berlin Heidelberg. 103-139.
    doi:10.1007/s00211-015-0739-0    download   
  • Maretzke, S., Bartels, M., Krenkel, M., Salditt, T., Hohage, T.. 2016. Regularized Newton methods for x-ray phase contrast and general imaging problems. Optics Express 24: 6490-6506.
    doi:10.1364/OE.24.006490    download   
  • Damien Fournier, Laurent Gizon, Martin Holzke, Thorsten Hohage. 2016. Pinsker estimators for local helioseismology: inversion of travel times for mass-conserving flows. Inverse Problems 32(10): 105002:27pp.
    doi:10.1088/0266-5611/32/10/105002    download   
  • Claudia König, Frank Werner, Thorsten Hohage. 2016. Convergence Rates for Exponentially Ill-Posed Inverse Problems with Impulsive Noise. SIAM J. Numer. Anal. 54(1): 341-360.
    doi:10.1137/15M1022252    download   
  • Werner, Frank. 2015. On convergence rates for iteratively regularized Newton-type methods under a Lipschitz-type nonlinearity condition. J. Inverse Ill-Posed Probl. 23(1): 75-84.
    doi:10.1515/jiip-2013-0074    download   
  • Thorsten Hohage, Lothar Nannen. 2015. Convergence of infinite element methods for scalar waveguide problems. BIT Numer. Math. 55(1): 215-254.
    doi:0.1007/s10543-014-0525-x    download   
  • Maretzke, S.. 2015. A uniqueness result for propagation-based phase contrast imaging from a single measurement. Inverse Problems 31(6): 065003:16pp.
    doi:10.1088/0266-5611/31/6/065003    download   
  • Hohage, Thorsten, Weidling, Frederic. 2015. Verification of a variational source condition for acoustic inverse medium scattering problems. Inverse Problems 31(7): 075006:14pp.
    doi:10.1088/0266-5611/31/7/075006    download   
  • Hohage, T., Rügge, C.. 2015. A coherence enhancing penalty for diffusion MRI: Regularizing property and discrete approximation. SIAM J. Imaging Sci. 8(3): 1874-1893.
    doi:10.1137/140998767    download   
  • C. Homann, T. Hohage, J. Hagemann, A.-L. Robisch, T. Salditt. 2015. Validity of the empty-beam correction in near-field imaging. Physical Review A 91: 013821.
    doi:10.1103/PhysRevA.91.013821    download   
  • Thorsten Hohage, Frank Werner. 2014. Convergence rates for inverse problems with impulsive noise. SIAM J. Numer. Anal. 52(3): 1203-1221.
    doi:10.1137/130932661    download   
  • Sophie Frick, Thorsten Hohage, Axel Munk. 2014. Asymptotic laws for change point estimation in inverse regression. Statistica Sinica 24(2): 555-575.
    doi:10.5705/ss.2012.007    download   
  • J. Hagemann, A. L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens, H. Suhonen, T. Salditt. 2014. Wave Front Reconstruction for Extended hard X-ray Beams from a set of Detection Planes. Optics Express 22: 11552-11569.
    doi:10.1364/OE.22.011552    download   
  • Fabian Dunker, Thorsten Hohage. 2014. On parameter identification in stochastic differential equations by penalized maximum likelihood. Inverse Problems 30(9): 095001:20pp.
    doi:10.1088/0266-5611/30/9/095001    download   
  • Fabian Dunker, Jean-Pierre Florens, Thorsten Hohage, Jan Johannes, Enno Mammen. 2014. Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression. Journal of Econometrics 178: 444-455.
    doi:10.1016/j.jeconom.2013.06.001    download   
  • Damien Fournier, Laurent Gizon, Thorsten Hohage, Aaron Birch. 2014. Generalization of the noise model for time-distance helioseismology. Astronomy & Astrophysics 567: A317:20pp.
    doi:10.1051/0004-6361/201423580    download   
  • Thorsten Hohage, Sofiane Soussi. 2013. Riesz bases and Jordan form of the translation operator in semi-infinite periodic waveguides. J. Math. Pures Appl. (9 100(1): 113-135.
    doi:10.1016/j.matpur.2012.10.013    download   
  • T. Hohage, F. Werner. 2013. Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data. Numerische Mathematik 123(4): 745-779.
    doi:10.1007/s00211-012-0499-z    download   
  • Lothar Nannen, Thorsten Hohage, Achim Schädle, Joachim Schöberl. 2013. Exact sequences of high order Hardy space inifinite elements for exterior Maxwell problems. SIAM J. Sci. Comput. 35(2): A1024-A1048.
    doi:10.1137/110860148    download   
  • R. Stück, M. Burger, T. Hohage. 2012. The iteratively regularized Gauss-Newton method with convex constraints and applications in 4Pi microscopy. Inverse Problems 28(1): 015012:16pp.
    doi:10.1088/0266-5611/28/1/015012    download   
  • J Jackiewicz, A C Birch, L Gizon, S Hanasoge, T Hohage, J B Ruffio, M Svanda. 2012. Multichannel Three-dimensional OLA Inversion for Local Helioseismology Solar Physics. Solar Phys 276: 19-33.
    doi:10.1007/s11207-011-9873-8    download   
  • F. Werner, T. Hohage. 2012. Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data. Inverse Problems 28(10): 104004:15pp.
    doi:10.1088/0266-5611/28/10/104004    download   
  • A. Paarmann, M. Gulde, M. Müller, Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, R. Ernstorfer. 2012. Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study. Journal of Applied Physics 112: 113109.
    doi:10.1063/1.4768204    download   
  • T. Hohage, S. Langer. 2010. Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems. Inverse Problems 26(7): 074011:15pp.
    doi:10.1088/0266-5611/26/7/074011    download   
  • T. Hohage, L. Nannen. 2009. Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal. 47(2): 972-996.
    doi:10.1137/070708044    download   
  • Langer, Stefan. 2009. Complexity analysis of the iteratively regularized Gauss-Newton method with inner CG-iteration. J. Inverse Ill-Posed Probl. 17(9): 871-890.
    doi:10.1515/JIIP.2009.051    download   
  • H. Harbrecht, T. Hohage. 2009. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Probl. Imaging 3(2): 353-371.
    doi:10.3934/ipi.2009.3.353    download   
  • F. Bauer, T. Hohage, A. Munk. 2009. Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal. 47(3): 1827-1846.
    doi:10.1137/080721789    download   
  • D. S. Gilliam, T. Hohage, X. Ji, R. Ruymgaart. 2009. The Frechet derivative of an analytic function of a bounded operator with some applications. Int. J. Math. Math. Sci.. Art. ID 239025, 17.
  • T. Hohage, M. Pricop. 2008. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Probl. Imaging 2(2): 271-290.
    doi:10.3934/ipi.2008.2.271    download   
  • T. Hohage, K. Giewekemeyer, T. Salditt. 2008. Iterative reconstruction of a refractive index from x-ray or neutron reflectivity measurements. Physical Review E. 77: 051604.
  • M. Uecker, T. Hohage, K. T. Block, J. Frahm. 2008. Image Reconstruction by Regularized Nonlinear Inversion - Joint Estimation of Coil Sensitivities and Image Content. Magnetic Resonance in Medicine 60: 674-682.
    doi:10.1002/mrm.21691    download   
  • F. Schmidt, T. Hohage, R. Klose, A. Schädle, L. Zschiedrich. 2008. Pole condition: a numerical method for Helmholtz-type scattering problems with inhomogeneous exterior domain. J. Comput. Appl. Math. 218(1): 61-69.
  • T. Hohage, M.-L. Rapun, F.-J. Sayas. 2007. Detecting corrosion using thermal measurements. Inverse Problems 23(1): 53-72.
    doi:10.1088/0266-5611/23/1/003    download   
  • S. Langer, T. Hohage. 2007. Convergence analysis of an inexact iteratively regularized Gauss-Newton method under general source conditions. J. Inverse Ill-Posed Probl. 15(3): 311-327.
    doi:10.1515/jiip.2007.017    download   
  • S. Hein, T. Hohage, W. Koch, J. Schöberl. 2007. Acoustic resonances in a high-lift configuration. J. Fluid Mech. 582: 179-202.
    doi:10.1017/S0022112007005770    download   
  • N. Bissantz, T. Hohage, A. Munk, F. Ruymgaart. 2007. Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal. 45(6): 2610-2636.
    doi:10.1137/060651884    download   
  • H. Harbrecht, T. Hohage. 2007. Fast methods for three-dimensional inverse obstacle scattering problems. J. Integral Equations Appl. 19(3): 237-260.
    doi:10.1216/jiea/1190905486    download   
  • T. Hohage. 2006. Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comput. Phys. 214(1): 224-238.
    doi:10.1016/    download   
  • T. Hohage, F.-J. Sayas. 2005. Numerical solution of a heat diffusion problem by boundary element methods using the Laplace transform. Numerische Mathematik 102(1): 67-92.
    doi:10.1007/s00211-005-0645-y    download   
  • T. Arens, T. Hohage. 2005. On radiation conditions for rough surface scattering problems. IMA J. Appl. Math. 70(6): 839-847.
  • F. Bauer, T. Hohage. 2005. A Lepskij-type stopping rule for regularized Newton methods. Inverse Problems 21(6): 1975-1991.
    doi:10.1088/0266-5611/21/6/011    download   
  • S. Hein, T. Hohage, W. Koch. 2004. On resonances in open systems. J. Fluid Mech. 506: 255-284.
  • N. Bissantz, T. Hohage, A. Munk. 2004. Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise. Inverse Problems 20(6): 1773-1789.
  • T. Hohage, F. Schmidt, L. Zschiedrich. 2003. Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method. SIAM J. Math. Anal. 35(3): 547-560.
    doi:10.1137/S0036141002406485    download   
  • T. Hohage, F. Schmidt, L. Zschiedrich. 2003. Solving time-harmonic scattering problems based on the pole condition. I. Theory. SIAM J. Math. Anal. 35(1): 183-210.
    doi:10.1137/S0036141002406473    download   


  • Helen Schomburg. 2017. New Algorithms for Local and Global Fiber Tractography in Diffusion-Weighted Magnetic Resonance Imaging. Universität Göttingen.
  • Christoph Ruegge. 2015. Spatial Coherence Enhancing Reconstructions for High Angular Resolution Diffusion MRI. University of Göttingen.
  • Carolin Homann. 2015. Phase retrieval problems in x-ray physics: From modeling to efficient algorithms. University of Göttingen.
  • Frank Werner. 2012. Inverse problems with Poisson data: Tikhonov-type regularization and iteratively regularized Newton methods. Universität Göttingen. download
  • Fabian Dunker. 2012. Nonlinear Inverse Problems with Noisy Operators and Applications in Nonparametric Instrumental Regression. Universität Göttingen.
  • Robert Stück. 2011. Semi-blind Deconvolution in 4Pi micrscopy. Universität Göttingen.
  • Felix Schenk. 2011. Optimization of resonances for multilayer x-ray resonators. Universität Göttingen.
  • Martin Uecker. 2009. Nonlinear Reconstruction Methods for Parallel Magnetic Resonance Imaging. Universität Göttingen. download
  • Lothar Nannen. 2008. Hardy-Raum Methoden zur numerischen Lösung von Streu- und Resonanzproblemen auf unbeschränkten Gebieten. Universität Göttingen. download
  • Stefan Langer. 2007. Preconditioned Newton methods for ill-posed problems. Universität Göttingen. download
  • Mihaela Pricop. 2007. Tikhonov regularization in Hilbert scales for nonlinear statistical inverse problems. Universität Göttingen. download

Ausgewählte Konferenzbeiträge

  • Thorsten Hohage. 2005. An iterative method for inverse medium scattering problems based on factorization of the far field operator. In The 2nd International Converence on Inverse Problems: Recent Theoretical Development and Numerical Approaches. Fudan University, Shanghai12: IOP. 33-45. download
  • Thorsten Hohage, Frank Schmidt, Lin Zschiedrich. 2002. A new method for the solution of scattering problems. In Proceedings of the European Symposium on Numerical Methods in Electromagnetics: JEE 02. 251-256. ONERA, Toulouse. download

Eingereichte Arbeiten

Alle Publikationen als BibTeX-Datei

Arbeitsgruppe Inverse Probleme


   Arbeitsgruppe Inverse Probleme
   Prof. Dr. Thorsten Hohage
   Lotzestraße 16-18
   D-37083 Göttingen

   Antje Scholz
   Raum 119
   Tel: +49 551 39 4529
   Fax: +49 551 39 3944