Institute for Numerical and Applied Mathematics - Research Group Inverse Problems

Short Introduction

Research Interests

  • Theory of inverse problems
  • Wavelet regularization
  • Partial differential equations
  • X-ray physics

Short CV

Personal info:
  • Date of birth: April 27,1990
  • Place of birth: Ilam, Iran
  • Nationality: Iranian
  • Marital status: Single

  • B.Sc in Applied Mathematics, Ilam University, Ilam, Iran, Oct 2008-Jul 2012
  • M.Sc in Mathematical analysis, Isfahan University of Technology, Isfahan, Iran, Oct 2012- Sep 2014
  • Ph.D in Mathematical analysis, Sahand University of Technology, Tabriz, Iran, (Started at Sep 2016- will be finished at Sep 2021)


  • Programming with MATHEMATICA
  • Teaching courses
    • Advanced engineering mathematics
    • General Mathematics I-II
    • Differential equations


    Refereed journal papers

    The linked pdf-files do not necessarily coincide with the article's published version.

    • Milad Karimi, Fridoun Moradlou, Mojtaba Hajipour. 2021. On the ill-posed analytic continuation problem: An order optimal regularization scheme. Appl. Numer. Math. 161: 311-332.
      doi:   download   
    • Milad Karimi andFatemeh Zallani, Khosro Sayevand. 2021. Wavelet regularization strategy for the fractional inverse diffusion problem. Numer. Algorithms 87(4): 1679-1705.
      doi:10.1007/s11075-020-01025-1   download   
    • Milad Karimi, Fridoun Moradlou, Mojtaba Hajipour. 2020. Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem. J. Sci. Comput. 83(2): 37.
      doi:10.1007/s10915-020-01211-2   download   
    • Milad Karimi, Fridoun Moradlou, Mojtaba Hajipour. 2018. On regularization and error estimates for the backward heat conduction problem with time-dependent thermal diffusivity factor. Commun. Nonlinear Sci. Numer. Simul. 63: 21-37.
      doi:10.1016/j.cnsns.2018.03.007   download   
    • Milad Karimi, Fridoun Moradlou, Mojtaba Hajipour. 2017. An accurate regularization technique for the backward heat conduction problem with time-dependent thermal diffusivity factor.
      doi:http://10.1016/j.cnsns.2018.03.007   download   
    • Milad Karimi, Alireza Rezaee. 2017. Regularization of the Cauchy problem for the Helmholtz equation by using Meyer wavelet. J. Comput. Appl. Math. 320: 76-95.
      doi:10.1016/   download   

    Submitted papers