Institut für Numerische und Angewandte Mathematik - Arbeitsgruppe Inverse Probleme
Kurzvorstellung von Thorsten Hohage



Thorsten Hohage
Institut für Numerische und Angewandte Mathematik
Lotzestraße 16-18
37083 Göttingen


Raum 115
Telefon 0551 39 4509
hohage@math.uni-goettingen.de



Forschungsinteressen


  • Inverse Probleme

    • inverse Probleme bei partiellen Differentialgleichungen, insbesondere inverse Streuprobleme
    • Regularisierungstheorie für statistische inverse Probleme
    • variationelle Regularisierung
    • effiziente Algorithmen
    • Anwendungsgebiete: Helioseismologie, Phasenrekonstruktionsprobleme in der Optik, Magnetresonanztomographie (MRT)
  • transparente Randbedingungen, Resonanzprobleme

    • Verfahren hoher Ordnung, insbesondere Hardyraum Infinite Elemente
    • numerische Berechnung von Resonanzen
    • Helmholtz-, Maxwell- und Elastizitäatsgleichungen
    • rückwärts-propagierende Moden

kurzer Lebenslauf


  • Persönliche Daten

    • geboren am 28.09.1971
    • verheiratet mit Susanne Petri
    • zwei Söhne: Anton (geb. 2010) und Jakob (geb. 2011)
  • Wissenschaftlicher Werdegang
    1999    Promotion zum Dr.~techn., Doktorvater: Heinz Engl. Thema: Iterative Methods in Inverse Obstacle Scattering: Regularization. Theory of Linear and Nonlinear Exponentially Ill-Posed Problems
    1996-1999    Doktoratsstudium an der Johannes-Kepler Universität Linz
    1996    Diplom in Mathematik, Betreuer: Rainer Kreß
    1993-1996    Mathematik- und Physik-Studium an der Georg-August Universität Göttingen
    1993    Vordiplome in Mathematik und Physik
    1991-1993    Mathematik- und Physik-Studium an der Philipps-Universität Marburg
    1991    Abitur, Jakob-Grimm Schule, Rotenburg/Fulda
    1988-1989    Austausch-Schuljahr an der Liberty High School in Renton, WA, USA
  • Berufliche Tätigkeit

    seit 2009    W3 Professor an der Georg-August Universität Göttingen
    2007--2009    W2 Professor an der Georg-August Univerität Göttingen
    2002--2007    Juniorprofessor am Institut für Numerische und Angewandte Mathematik, Georg-August Universität Göttingen
    2000--2002    Wissenschaftlicher Mitarbeiter am Zuse-Institut Berlin bei Peter Deuflhard
    1998--2000    Wissenschaftlicher Mitarbeiter im SFB F013 Numerical and Symbolic Scientific Computing, Linz
    1996--1998   Wissenschaftlicher Mitarbeiter am Institut für Industriemathematik, Johannes-Kepler Universität Linz
  • Sonstige Aktivitäten und Auszeichnungen

    • Max-Planck Fellow am MPI für Sonnensystemforschung (seit 2017)
    • Mitglied der Editorial Boards der Zeitschriften Inverse Problems, Journal of Inverse and Ill-Posed Problems, und International Journal on Geomathematics
    • Vertrauensdozent der Studienstiftung des Deutschen Volkes (seit 2008)
    • Wissenschaftspreis des Deutschen Zentrums für Luft- und Raumfahrt (DLR) für die Arbeit On resonances in open systems (2004)
    • Erster Preis im Landeswettbewerb Mathematik, Hessen (1986)



Publikationen

google scholar Profil



    Referierte Artikel in Zeitschriften


    Die verlinkten pdf-Dateien stimmen nicht zwingend mit der veröffentlichten Version des Artikels überein!


    • Thorsten Hohage, Frederic Weidling. 2017. Characterizations of variational source conditions, converse results, and maxisets of spectral regularization methods. SIAM J. Numer. Anal. 55(2): 598-620.
      doi:10.3934/ipi.2017010   download   
    • Simon Maretzke, Thorsten Hohage. 2017. Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging. SIAM J. Appl. Math. 77(2): 384-408.
      doi:10.1137/16M1086170   download   
    • Laurent Gizon, Hélène Barucq, Marc Duruflé, Chris Hanson, Michael Leguèbe, Aaron Birch, Juliette Chabassier, Damien Fournier, Thorsten Hohage, Emanuele Papini. 2017. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows. Astronomy & Astrophysics 600: A35.
      doi:10.1051/0004-6361/201629470   download   
    • Helen Schomburg, Thorsten Hohage. 2017. Semi-Local Tractography Strategies Using Neighborhood Information. Medical Image Analysis 38: 165-183.
      doi:10.1016/j.media.2017.03.003   download   
    • Frederic Weidling, Thorsten Hohage. 2017. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging 11(1): 203-220.
      doi:10.3934/ipi.2017010   download   
    • Thorsten Hohage, Frank Werner. 2016. Inverse Problems with Poisson Data: statistical regularization theory, applications and algorithms. Inverse Problems 32: 093001:56pp.
      doi:10.1088/0266-5611/32/9/093001   download   
    • Simon Maretzke, Matthias Bartels, Martin Krenkel, Tim Salditt, Thorsten Hohage. 2016. Regularized Newton methods for X-ray phase contrast and general imaging problems. Optics Express 24(6): 6490-6506.
      doi:10.1364/OE.24.006490   download   
    • Martin Halla, Thorsten Hohage, Lothar Nannen, Joachim Schöberl. 2016. Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numer. Math. 133: Springer Berlin Heidelberg. 103-139.
      doi:10.1007/s00211-015-0739-0   download   
    • Damien Fournier, Laurent Gizon, Martin Holzke, Thorsten Hohage. 2016. Pinsker estimators for local helioseismology: inversion of travel times for mass-conserving flows. Inverse Problems 32(10): 105002:27pp.
      doi:10.1088/0266-5611/32/10/105002   download   
    • Claudia König, Frank Werner, Thorsten Hohage. 2016. Convergence Rates for Exponentially Ill-Posed Inverse Problems with Impulsive Noise. SIAM J. Numer. Anal. 54(1): 341-360.
      doi:10.1137/15M1022252   download   
    • Thorsten Hohage, Lothar Nannen. 2015. Convergence of infinite element methods for scalar waveguide problems. BIT Numer. Math. 55(1): 215-254.
      doi:0.1007/s10543-014-0525-x   download   
    • Thorsten Hohage, Frederic Weidling. 2015. Verification of a variational source condition for acoustic inverse medium scattering problems. Inverse Problems 31(7): 075006:14pp.
      doi:10.1088/0266-5611/31/7/075006   download   
    • Thorsten Hohage, Christoph Rügge. 2015. A coherence enhancing penalty for diffusion MRI: Regularizing property and discrete approximation. SIAM J. Imaging Sci. 8(3): 1874-1893.
      doi:10.1137/140998767   download   
    • Carolin Homann, Thorsten Hohage, Johannes Hagemann, Anna-Lena Robisch, Tim Salditt. 2015. Validity of the empty-beam correction in near-field imaging. Physical Review A 91: 013821.
      doi:10.1103/PhysRevA.91.013821   download   
    • Thorsten Hohage, Frank Werner. 2014. Convergence Rates for Inverse Problems with Impulsive Noise. SIAM J. Numer. Anal. 52(3): 1203-1221.
      doi:10.1137/130932661   download   
    • Sophie Frick, Thorsten Hohage, Axel Munk. 2014. Asymptotic laws for change point estimation in inverse regression. Statistica Sinica 24(2): 555-575.
      doi:10.5705/ss.2012.007   download   
    • J. Hagemann, A. L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens, H. Suhonen, T. Salditt. 2014. Wave Front Reconstruction for Extended hard X-ray Beams from a set of Detection Planes. Optics Express 22: 11552-11569.
      doi:10.1364/OE.22.011552   download   
    • Fabian Dunker, Thorsten Hohage. 2014. On parameter identification in stochastic differential equations by penalized maximum likelihood. Inverse Problems 30: 095001:20pp.
      doi:10.1088/0266-5611/30/9/095001   download   
    • Fabian Dunker, Jean-Pierre Florens, Thorsten Hohage, Jan Johannes, Enno Mammen. 2014. Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression. Journal of Econometrics 178: 444-455.
      doi:10.1016/j.jeconom.2013.06.001   download   
    • Damien Fournier, Laurent Gizon, Thorsten Hohage, Aaron Birch. 2014. Generalization of the noise model for time-distance helioseismology. Astronomy & Astrophysics 567: A317:20pp.
      doi:10.1051/0004-6361/201423580   download   
    • Thorsten Hohage, Sofiane Soussi. 2013. Riesz bases and Jordan form of the translation operator in semi-infinite periodic waveguides. J. Math. Pures Appl. (9) 100(1): 113-135.
      doi:10.1016/j.matpur.2012.10.013   download   
    • Thorsten Hohage, Frank Werner. 2013. Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data. Numer. Math. 123: 745-779.
      doi:10.1007/s00211-012-0499-z   download   
    • Lothar Nannen, Thorsten Hohage, Achim Schädle, Joachim Schöberl. 2013. Exact sequences of high order Hardy space inifinite elements for exterior Maxwell problems. SIAM J. Sci. Comput. 35(2): A1024-A1048.
      doi:10.1137/110860148   download   
    • Robert Stück, Martin Burger, Thorsten Hohage. 2012. The iteratively regularized Gauß-Newton method with convex constraints and applications in 4Pi microscopy. Inverse Problems 28: 015012:16pp.
      doi:10.1088/0266-5611/28/1/015012   download   
    • J Jackiewicz, A C Birch, L Gizon, S Hanasoge, T Hohage, J B Ruffio, M Svanda. 2012. Multichannel Three-dimensional OLA Inversion for Local Helioseismology Solar Physics. Solar Phys 276: 19-33.
      doi:10.1007/s11207-011-9873-8   download   
    • F. Werner, T. Hohage. 2012. Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data. Inverse Problems 28(10): 104004:15pp.
      doi:10.1088/0266-5611/28/10/104004   download   
    • A. Paarmann, M. Gulde, M. Müller, S. Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, R. Ernstorfer. 2012. Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study. Journal of Applied Physics 112: 113109.
      doi:10.1063/1.4768204   download   
    • Thorsten Hohage, Stefan Langer. 2010. Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems. Inverse Problems 26: 074011:15pp.
      doi:10.1088/0266-5611/26/7/074011   download   
    • Thorsten Hohage, Lothar Nannen. 2009. Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal. 47: 972-996.
      doi:10.1137/070708044   download   
    • H. Harbrecht, T. Hohage. 2009. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Probl. Imaging 3(2): 353-371.
      doi:10.3934/ipi.2009.3.353   download   
    • F. Bauer, T. Hohage, A. Munk. 2009. Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal. 47(3): 1827-1846.
      doi:10.1137/080721789   download   
    • T. Hohage, M. Pricop. 2008. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Probl. Imaging 2(2): 271-290.
      doi:10.3934/ipi.2008.2.271   download   
    • T. Hohage, K. Giewekemeyer, T. Salditt. 2008. Iterative reconstruction of a refractive index from x-ray or neutron reflectivity measurements. Physical Review E. 77: 051604.
      doi:10.1103/PhysRevE.77.051604      
    • M. Uecker, T. Hohage, K. T. Block, J. Frahm. 2008. Image Reconstruction by Regularized Nonlinear Inversion - Joint Estimation of Coil Sensitivities and Image Content. Magnetic Resonance in Medicine 60: 674-682.
      doi:10.1002/mrm.21691   download   
    • Frank Schmidt, Thorsten Hohage, Roland Klose, Achim Schädle, Lin Zschiedrich. 2008. Pole condition: A numerical method for Helmholtz-type scattering problems with inhomogeneous exterior domain. J. Comput. Appl. Math. 218(1): 61-69.
      doi:10.1016/j.cam.2007.04.046      
    • T. Hohage, M.-L. Rapun, F.-J. Sayas. 2007. Detecting corrosion using thermal measurements. Inverse Problems 23(1): 53-72.
      doi:10.1088/0266-5611/23/1/003   download   
    • S. Langer, T. Hohage. 2007. Convergence analysis of an inexact iteratively regularized Gauss-Newton method under general source conditions. J. Inverse Ill-Posed Probl. 15(3): 311-327.
      doi:10.1515/jiip.2007.017   download   
    • S. Hein, T. Hohage, W. Koch, J. Schöberl. 2007. Acoustic resonances in a high-lift configuration. J. Fluid Mech. 582: 179-202.
      doi:10.1017/S0022112007005770   download   
    • N. Bissantz, T. Hohage, A. Munk, F. Ruymgaart. 2007. Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal. 45(6): 2610-2636.
      doi:10.1137/060651884   download   
    • H. Harbrecht, T. Hohage. 2007. Fast methods for three-dimensional inverse obstacle scattering problems. J. Integral Equations Appl. 19(3): 237-260.
      doi:10.1216/jiea/1190905486   download   
    • T. Hohage. 2006. Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comput. Phys. 214(1): 224-238.
      doi:10.1016/j.jcp.2005.09.025   download   
    • T. Hohage, F.-J. Sayas. 2005. Numerical solution of a heat diffusion problem by boundary element methods using the Laplace transform. Numerische Mathematik 102(1): 67-92.
      doi:10.1007/s00211-005-0645-y   download   
    • T. Arens, T. Hohage. 2005. On radiation conditions for rough surface scattering problems. IMA J. Appl. Math. 70(6): 839-847.
      doi:10.1093/imamat/hxh065      
    • Frank Bauer, Thorsten Hohage. 2005. A Lepskij`s stopping rule for Newton-type methods with random noise. PAMM 5: 15-18.
      doi:10.1002/pamm.200510005   download   
    • F. Bauer, T. Hohage. 2005. A Lepskij-type stopping rule for regularized Newton methods. Inverse Problems 21(6): 1975-1991.
      doi:10.1088/0266-5611/21/6/011   download   
    • S. Hein, T. Hohage, W. Koch. 2004. On resonances in open systems. J. Fluid Mech. 506: 255-284.
      doi:10.1017/S0022112004008584      
    • N. Bissantz, T. Hohage, A. Munk. 2004. Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise. Inverse Problems 20(6): 1773-1789.
      doi:10.1088/0266-5611/20/6/005      
    • T. Hohage, F. Schmidt, L. Zschiedrich. 2003. Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method. SIAM J. Math. Anal. 35(3): 547-560.
      doi:10.1137/S0036141002406485   download   
    • T. Hohage, F. Schmidt, L. Zschiedrich. 2003. Solving time-harmonic scattering problems based on the pole condition. I. Theory. SIAM J. Math. Anal. 35(1): 183-210.
      doi:10.1137/S0036141002406473   download   
    • Thorsten Hohage. 2001. On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Problems 17: 1743-1763.
      download   
    • Peter Hähner, Thorsten Hohage. 2001. New Stability estimates for the inverse acoustic inhomogeneous medium problem and applications. SIAM J. Math. Anal. 62: 670-685.
      doi:10.1137/S0036141001383564   download   
    • Thorsten Hohage. 2000. Regularization of Exponentially ill-posed Problems. Numer. Funct. Anal. Optim. 21: 439-464.
      doi:10.1080/01630560008816965   download   
    • Thorsten Hohage. 1998. Convergence Rates of a Regularized Newton Method in Sound-Hard Inverse Scattering. SIAM J. Numer. Anal. 36: 125-142.
      doi:10.1137/S0036142997327750      
    • Thorsten Hohage, Christoph Schormann. 1998. A Newton-type method for a transmission problem in inverse scattering. Inverse Problems 14: 1207-1227.
      download   
    • Thorsten Hohage. 1997. Logarithmic Convergence Rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13: 1279-1299.
      download   



    Abschlussarbeiten


    • Thorsten Hohage. 1999. Iterative Methods in Inverse Obstacle Scattering: Regularization Theory of Linear and Nonlinear Exponentially ill-posed Problems. University of Linz.download
    • Thorsten Hohage. 1996. Newton-Verfahren beim inversen Neumann-Problem zur Helmholtz-Gleichung. University of Göttingen. Diplomarbeit.download



    Ausgewählte Konferenzbeiträge


    • Thorsten Hohage. 2005. An iterative method for inverse medium scattering problems based on factorization of the far field operator. In The 2nd International Converence on Inverse Problems: Recent Theoretical Development and Numerical Approaches. Fudan University, Shanghai12: IOP. 33-45.download
    • Thorsten Hohage, Frank Schmidt, Lin Zschiedrich. 2002. A new method for the solution of scattering problems. In Proceedings of the European Symposium on Numerical Methods in Electromagnetics: JEE 02. 251-256. ONERA, Toulouse.download



    Eingereichte Arbeiten





    BibTeX-Datei der Publikationen von T. Hohage
    Link zu allen Publikationen der Arbeitsgruppe Inverse Probleme